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RESUME 

Le Bénin, en dépit des dispositions mis en œuvre pour accéder à la souveraineté 

énergétique, continue de s’appuyer sur les pays voisins pour répondre à ses besoins en 

énergie électrique. Dans ce cadre, pour atteindre l’efficacité de gestion en matière 

énergétique, il est crucial d’estimer avec précision la demande nationale future en électricité. 

Ce mémoire s’inscrit dans le cadre de l’amélioration des prévisions de la demande 

énergétique au Bénin, un enjeu stratégique pour répondre efficacement aux besoins 

croissants de la population tout en garantissant la stabilité du réseau électrique. L’objectif 

principal est de développer un modèle prédictif robuste et adapté au contexte du Bénin, 

capable de prédire avec précision la demande d’achat d’électricité à court terme. Les données 

utilisées, fournies par la SBEE, couvrent la période de janvier 2017 à décembre 2023 et de 

janvier à mars 2024. Une dizaine de modèles a été choisie et testée. Il s’agit de ARIMA, 

GAM, lissage exponentiel, Prophet, GARCH, LSTM, CNN, GRU, ARIMA-LSTM, CNN-

LSTM et CNN-LSTM. Parmi ces modèles testés, cinq modèles ont été sélectionnés et utilisés 

des prévisions sur les horizons 24 h, 48 h et 72 h. A l’issue des prévisions, le modèle LSTM 

s’est avéré performant sur tous ces horizons de temps. Il a été intégré dans l’application 

développée avec l’outil Streamlit sous Python 3.11.4, pour faciliter son utilisation. Les 

métriques de performances du modèle – MAE, RMSE, MAPE et R² - selon chaque horizon 

de temps se présentent respectivement 4,8583 ; 5,8833 ; 2,05% et 0, 9322 sur un horizon de 

24 heures, 4,6765 ; 5,9106 ; 1,91% et 0,9292 sur un horizon de 48 heures et enfin 4,1490 ; 

5,3930 ; 1,68% et 0,9313 sur un horizon de 72 heures.  

 

Mots-clés : Prévision énergétique, LSTM, CNN, GRU, Benin. 
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ABSTRACT 

Despite the steps taken to achieve energy sovereignty, Benin continues to rely on 

neighboring countries to meet its electricity needs. In this context, to achieve energy 

management efficiency, it is important to accurately estimate future national electricity 

demand. This dissertation is part of the effort to improve energy demand forecasting in 

Benin, a strategic challenge for effectively meeting the growing needs of the population 

while guaranteeing the stability of the power grid. The main objective is to develop a robust 

predictive model adapted to the Benin context, capable of accurately predicting short-term 

electricity purchase demand. The data used, provided by SBEE, cover the period from 

January 2017 to December 2023 and from January to March 2024. A dozen models were 

selected and tested. These were ARIMA, GAM, exponential smoothing, Prophet, GARCH, 

LSTM, CNN, GRU, ARIMA-LSTM, CNN-LSTM and CNN-LSTM. Among the models 

tested, five were selected and used for forecasts over 24h, 48h and 72h horizons. The LSTM 

model was found to perform well over all these time horizons. It has been integrated into the 

Streamlit Python application for ease of use. The model's performance metrics - MAE, 

RMSE, MAPE and R² - for each time horizon are respectively 4.8583; 5.8833; 2.05% and 

0.9322 over a 24-hour horizon, 4.6765; 5.9106; 1.91% and 0.9292 over a 48-hour horizon 

and finally 4.1490; 5.3930; 1.68% and 0.9313 over a 72-hour horizon.  

Keywords: Energy forecast, LSTM, CNN, GRU, Benin. 
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INTRODUCTION GENERALE 

La disponibilité en énergie électrique est un atout de taille pour tout territoire qui aspire 

à un développement économique. En effet, l’électricité stimule le développement de 

plusieurs secteurs critiques de l’économie du pays : industriel, tertiaire, agricole, éducatif et 

sanitaire. La qualité et le fonctionnement continu de ces secteurs critiques ainsi que la 

satisfaction des besoins des ménages sont subordonnés à la qualité, la fiabilité, l’accessibilité 

en termes de coût et de durabilité de l’énergie électrique. L’électricité produite alimente en 

continu les consommateurs. Egale à la somme de la consommation et des pertes dans le 

réseau électrique, cette production est un vecteur énergétique difficilement stockable dans 

un réseau électrique. Pour ce fait, les gestionnaires du réseau électrique et les producteurs 

cherchent un équilibre entre la production et la consommation pour éviter un écroulement 

du réseau lié à une inadéquation entre l’offre et la demande. 

Au Bénin, la politique du gouvernement est d’avoir de l’électricité fiable, durable et à 

moindre coût, un accès à l’électricité pour tous et un service continu dans la fourniture 

d’énergie électrique. Malheureusement, le Bénin dépend encore en majorité des pays voisins 

pour l’approvisionnement de l’énergie électrique. En effet, cette dépendance en électricité 

estimée à plus de 50% en 2023 [1], a toujours des impacts sur le secteur électrique. En effet, 

des délestages perturbent les activités économiques du pays et durent depuis des années [2], 

[3]. Malgré ces déficits dans le secteur, de nombreux acteurs privés participent à la mise en 

œuvre de la politique énergétique du gouvernement. Ils financent la construction des sous-

stations partout sur le territoire et le réseau électrique connaît de nouvelles extensions, ce qui 

permet d’alimenter les villages les plus reculés du pays [4]. Le réseau de distribution suscite 

l’adhésion de nouveaux clients à des offres promotionnelles de branchement des compteurs 

[5]. Ces améliorations laissent présager une augmentation du niveau de consommation du 

pays en énergie électrique. Cela entraîne une nécessité de faire des prévisions précises pour 

éviter des perturbations dans les centrales électriques de production et des lieux de 

consommation. 

Par ailleurs, lorsque la quantité d’énergie demandée est en dessous des besoins réels 

de la population, l’offre des fournisseurs d’électricité est réduite, créant ainsi un déséquilibre 

entre cette dernière et la demande sur le réseau. Ce déséquilibre est souvent causé par des 

écarts de prévision de la consommation d’électricité. Alors des perturbations s’observent et 

impactent toutes les activités dépendant de l’énergie électrique. Parmi ces perturbations 

figurent des coupures volontaires aux heures de pointes afin d’éviter l’écroulement de tout 
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le réseau. De même, si la quantité d’énergie demandée est au-dessus des besoins sur le 

réseau, les producteurs fournissent l’énergie électrique nécessaire pour la satisfaction de la 

demande en utilisant les ressources de la production. Malheureusement cette énergie injectée 

sur le réseau n’est pas souvent entièrement consommée mais se dissipe car il est 

essentiellement difficile de la stocker. 

Face à cette situation les gestionnaires du réseau électrique ont besoin d’un outil de 

prévision performant afin d’évaluer avec précision la demande et d’éviter les écarts de 

prévision entre les demandes exprimées et les consommations réelles sur le réseau. Aussi cet 

outil participe -t-il à la prise de décision pour des projets de développement futurs du réseau. 

C’est dans ce cadre que ce projet de fin d’étude aborde le thème : « Contribution au 

développement d’un modèle performant de demande d’achat d’électricité à la Société 

Béninoise d’Énergie Électrique ». Cette recherche se positionne sur la problématique de la 

prévision exacte de la demande précise d’achat d’électricité au niveau de la Société 

Béninoise d’Energie Electrique (SBEE).  

L’objectif général est de développer un modèle d’apprentissage automatique capable 

de prédire à différents horizons de temps la demande d’achat d’électricité à la SBEE. Pour 

atteindre cet objectif, le travail est subdivisé en objectifs spécifiques que sont : 

• Etablir une cartographie des différents modèles d’intelligence artificielle 

permettant la prédiction de la demande en énergie électrique sur le réseau 

électrique ; 

• Implémenter les modèles cartographiés sur le réseau de la SBEE pour les horizons 

de précision ciblés ; 

• Evaluer les performances des différents modèles choisis ; 

• Construire une plateforme numérique pour le déploiement. 

Le présent travail s’est articulé autour de quatre (04) chapitres. Le premier décrit les 

cadres théoriques, institutionnel et juridique du secteur de l’électricité au Bénin. Le 

deuxième consiste en la revue de littérature sur les travaux de prévisions de la demande en 

énergie électrique. Le troisième explique la méthodologie utilisée pour la construction des 

modèles. Quant au quatrième, il est consacré à la présentation des résultats obtenus avec les 

discussions faites autour.  
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Chapitre 1. Présentation du secteur de l’électricité au Bénin 

1.1. INTRODUCTION PARTIELLE 

Afin de renforcer son secteur énergétique et d’en assurer un fonctionnement optimal, 

le gouvernement du Bénin a adopté plusieurs politiques et stratégies. Ce chapitre a pour but 

de présenter les cadres institutionnel et réglementaire du secteur de l’énergie électrique en 

République du Bénin. 

1.2. CADRE INSTITUTIONNEL DU SECTEUR DE L’ELECTRICITE AU 

BENIN 

Le développement du secteur de l’énergie électrique et la disponibilité en continue de 

l’électricité requiert généralement l’implication de plusieurs acteurs, privés, nationaux, 

régionaux comme internationaux. Au Bénin, le Ministère de l’Énergie, de l’Eau et des Mines 

(MEEM) est le premier responsable du secteur, le Ministère du Commerce et de l’Industrie 

(MCI) et d’autres acteurs interviennent activement afin d’assurer la disponibilité de l’énergie 

électrique pour tous les béninois. 

Chacune de ces structures intervient dans un domaine spécifique pour l’amélioration 

du secteur de l’électricité. 

1.2.1. Ministère de l’Énergie de l’Eau et des Mines 

Ce Ministère a en son sein trois portefeuilles, notamment celui de l’Energie, de l’Eau 

et des Mines et a pour mission d’en assurer la gestion efficace. Bien qu’il soit constitué de 

plusieurs cellules techniques, nous ne prendrons en compte, dans cette section, que celles 

qui interviennent dans le secteur de l’Energie. 

Le Ministère a été réorganisé avec ses attributions et son fonctionnement suivant le 

décret n°2023 - 304 du 07 juin 2023. 

Chacune de ces directions techniques et organismes disposent d’une organisation 

spécifique et participe activement au développement du secteur d’électricité. 

1.2.1.1. Direction Générale de la Planification Énergétique, de l’Électrification Rurale et 

de la Règlementation (DGPEERR) 

Créée en 2006 pour accélérer le développement du secteur et améliorer l’accès à 

l’électricité au Bénin, l’ex DGRE est désormais dénommée la Direction Générale de la 

Planification énergétique, de l’Électrification rurale, et de la Réglementation (DGPEERR). 
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Elle est dirigée par un Directeur Général, placé sous l’autorité du Secrétaire d’État à 

l’Énergie. 

La DGPEERR oriente et coordonne les actions des structures opérationnelles du 

Ministère en charge de l’énergie. Elle élabore, en liaison avec les structures nationales 

compétentes, et veille à la mise en œuvre de la politique du Gouvernement relative au 

développement des ressources énergétiques nationales, à la maîtrise de l’énergie, à 

l’efficacité énergétique. Elle rend compte régulièrement au Ministre de l’Énergie de 

l’évolution du sous-secteur de l’électricité. 

Plus spécifiquement, la DGPEERR : 

• Assure le rôle de référent technique pour le Ministre de l’Énergie ; 

• Formule la politique nationale, la stratégie et des plans d’actions du 

développement de l’énergie ; 

• Promeut les énergies renouvelables et la maîtrise de l’énergie ; 

• Gère le système d’information national de l’énergie ; 

• Assure la planification énergétique ; 

• Élabore et suit les statistiques énergétiques du secteur ; 

• Propose le cadre réglementaire, législatif et tarifaire pour le développement 

du secteur de l’énergie ; 

• Élabore et met à la disposition des acteurs une documentation sur l’énergie ; 

• Met en place des textes juridiques applicables au secteur. 

1.2.1.2. Agence de Contrôle des Installations Electriques Intérieures (CONTRELEC) 

L’Agence de Contrôle des Installations Electriques Intérieures (CONTROLEC) est un 

établissement public à caractère scientifique et technique. Elle a été créée par décret n° 2008-

629 du 22 octobre 2008. Les services de CONTRELEC sont installés dans tous les centres 

commerciaux de la SBEE pour assurer une veille en accord avec les normes électriques en 

vigueur. 

Elle dispose d’un Conseil d’Administration et d’une Direction Générale qui assurent 

les activités de direction. 

La CONTROLEC a pour mission d’œuvrer au respect des prescriptions techniques 

relatives à la réalisation des installations électriques intérieures pour assurer la sécurité des 

personnes et des biens. Les activités résultantes de sa mission sont entre autres : 

• Effectuer le contrôle obligatoire des installations électriques intérieures avant 

leur première mise sous tension ; 
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• Exécuter sur demande, le contrôle des installations électriques intérieures déjà 

mises sous tension ; 

• Réaliser l’expertise des installations électriques intérieures dans le bâtiment ; 

• Elaborer et mettre en œuvre toutes études et actions en vue du respect des 

normes de sécurité dans la réalisation des installations électriques intérieures ; 

• Effectuer le contrôle des installations électriques intérieures des immeubles 

de grande hauteur (IGH), des Unités Industrielles (UI), des Etablissements 

Recevant du Public et des Établissements classés dangereux. 

1.2.1.3. Société Béninoise de Production d’Électrique (SBPE) 

Depuis des décennies, la gestion de la fourniture de l’électricité a été confiée à la 

Communauté Électrique du Bénin (CEB). Mais, pour réellement maîtriser le secteur de 

l’électricité au Bénin, il s’est avéré nécessaire de mettre en place des réformes visant à 

décentraliser le secteur en faisant apparaître de nouveaux acheteurs avec de nouveaux rôles. 

C’est dans ce cadre que le gouvernement a décidé d’instituer une séparation du transport et 

de la production de l’énergie électrique et par la création de la SBPE. 

1.2.1.3.1. Présentation de la SBPE 

La SBPE est créée en 2020, avec un statut de société publique, et comme dessein d’en 

faire le principal producteur et l’unique potentiel acheteur de l’énergie électrique en 

République du Bénin. Elle dispose des ressources nécessaires pour accomplir la politique 

gouvernementale que constitue la maîtrise du secteur de l’électricité [6]. 

1.2.1.3.2. Mission de la SBPE 

Principalement, la SBPE a pour mission de garantir l’équilibre offre-demande dans le 

secteur de l’énergie électrique en fournissant l’énergie électrique et en assurant la 

disponibilité suffisante de l’offre d’électricité. Afin de garantir l’approvisionnement en 

qualité et à coût abordable de l’électricité, elle a en charge la mise en œuvre de la politique 

de l’État béninois en matière d’importation et de production d’énergie électrique. 

Le décret n°2020-565 du 02 décembre 2020 lui confère ce monopole d’exercer cette 

activité sur toute l’étendue du territoire béninois. 
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1.2.1.3.3. Structure organisationnelle 

Un Directeur Général, sous l’autorité d’un Conseil d’Administration, dirige la SBPE. 

D’autres Directions et Cellules assistent le Directeur Général dans ses fonctions [7]. 

1.2.1.3.4. Activités 

La SBPE exploite ses actifs propres, importe de l’électricité et achète l’énergie 

électrique solaire que les producteurs indépendants fournissent dans le réseau électrique ou 

hors réseau. Cette énergie qu’elle aura achetée ou produite est ensuite revendue à la SBEE 

et aux clients industriels. Elle développe et facilite la pénétration des énergies renouvelables 

dans le mix énergétique béninois. 

1.2.1.4. Société Béninoise d’Énergie Électrique (SBEE) 

La Société Béninoise d’Énergie Électrique a été créée en 1948 et nommée Compagnie 

Coloniale de la Distribution de l’Énergie Électrique. En 1973, elle a pris le nom de la Société 

Dahoméenne d’Électricité et d’Eau puis au moment de changement de nom de la nation, elle 

est devenue la Société Béninoise d’Électricité et d’Eau [8]. 

En janvier 2004, le Gouvernement, dans le souci de faire du secteur une priorité, a 

séparé les activités de l’électricité et celles de l’eau : la Société Béninoise d’Énergie 

Électrique (SBEE) et la Société Nationale des Eaux du Bénin (SONEB) ont vu le jour. 

La gestion du réseau de distribution de l’énergie électrique du Bénin est principalement 

à la charge de la SBEE placée sous la tutelle du Ministère en charge de l’Énergie, de l’Eau 

et des Mines [9]. 

1.2.1.4.1. Présentation de la SBEE 

Créée en janvier 2004 [10], [3], la SBEE est une structure, à caractère commercial et 

industriel, présente sur toute l’étendue du territoire national, à travers ses agences et a en 

charge la commercialisation de l’électricité. 

En 2019, les réformes conduites par le Gouvernement au sein de toutes les institutions 

publiques l’ont conduit à soumettre la SBEE à une gestion déléguée. Elle a été dirigée par 

une équipe de Manitoba Hydro International (MHI), un groupe canadien, pendant quatre 

(04) ans [11]. Cette gestion déléguée est survenue dans la période où la SBEE traversait une 

crise économique et technique. 

Sous cette gestion déléguée le réseau de distribution a s’est développé à travers de 

nouvelles constructions de postes et de lignes électriques grâce au projet financé par le 
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Gouvernement Américain. Ce réseau de distribution est actuellement conduit et exploité par 

deux centres de contrôle de distribution, aussi appelé Dispatching.   

Par ailleurs, le renouvellement du contrat de la gestion déléguée a positionné une 

nouvelle équipe à la direction de la SBEE, celle de la société ERANOVE [12].  

La SBEE alimente essentiellement les secteurs résidentiels, tertiaires et certains 

secteurs industriels à travers des infrastructures et des équipements électriques [3], [13]. 

1.2.1.4.2. Mission de la SBEE 

La SBEE est chargée de l’exploitation du réseau de distribution de l’énergie électrique 

et a le devoir de surveiller les mouvements des flux de l’énergie électrique. Elle doit porter 

l’assistance à la CEB dans le maintien de la stabilité. Elle a aussi dans ses missions la veille 

au respect des tensions normales d’exploitation et de la qualité de la tension livrée aux 

abonnés [10]. 

De nos jours, les activités d’exploitation du réseau de distribution se réalisent 

progressivement sur l’ensemble du territoire de façon automatique grâce aux deux centres 

de contrôle du réseau. 

1.2.1.4.3. Structure organisationnelle 

La SBEE est une structure publique et industrielle avec un Conseil d’Administration 

qui contrôle sa gestion et fait régulièrement le compte rendu au Ministre de l’Énergie, de 

l’Eau et des Mines. Un Directeur Général dirige la SBEE sous l’autorité du Conseil 

d’Administration et est assisté dans ses fonctions par le Comité d’Audit Interne et 

d’Inspection ainsi que par la Direction Audit Interne [3]. 

Pour améliorer sa performance opérationnelle, la SBEE est structurée en trois (03) 

parties : le STAFF de la Direction Générale, les Directions opérationnelles et les Directions 

Supports.  Ces trois divisions appuient la Direction Générale dans l’exécution des missions 

qui lui sont confiées [3]. 

1.2.1.4.4. Activités de la SBEE 

Depuis des années, la SBEE enregistre d’importantes pertes de l’électricité 

commercialisée sur le réseau de distribution. Ces pertes d’énergie électrique sont 

essentiellement dues à la vétusté des infrastructures de distribution, au retard de 

recouvrement et à la fraude liée à la commercialisation de l’énergie électrique [3]. 

Les activités principales de la SBEE sont divisées en trois catégories : 
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• Les activités d’exploitation ; 

• Les activités commerciales ; 

• Les activités de développement. 

➢ Activités d’exploitation 

Il s’agit de la construction du réseau, de la maintenance et de l’exploitation des 

ouvrages électriques pour l’acheminement de l’électricité aux consommateurs finaux. Ces 

activités englobent également celles relative à la maintenance préventive et curative des 

ouvrages électriques. Elles sont exécutées par la Direction Technique. 

La gestion prévisionnelle du réseau est également une tâche dévolue à la Direction 

Technique. Toutefois, il s’agit d’une activité qui relève particulièrement du Département 

Conduite Réseau HTA/HTB. 

➢ Activités commerciales 

Dans les activités commerciales sont classées les activités liées au branchement des 

compteurs, la gestion des clients, l’établissement des devis et le recouvrement de créances. 

Elles sont accomplies par les Directions Régionales. 

Les Directions Support soutiennent les autres parties de la structure organisationnelle. 

➢ Activités de développement 

La SBEE ne fait pas que l’exploitation du réseau électrique de distribution et la vente 

d’énergie électrique. Elle intervient également dans la planification de la demande, des 

études, la recherche des financements des projets et le suivi des projets. 

La Direction des Études, de la Planification et des Projets s’occupe particulièrement 

de ces activités. 

➢ Autres activités 

Autrefois la SBEE produisait de l’énergie électrique avec les centrales thermiques 

interconnectées au réseau électrique pour compléter les déficits sur le réseau de distribution.  

Elle louait des centrales constituées de groupes diésel lors de crises énergétiques. 

Le tableau suivant présente la production par région de 2016 à 2018 [14]. 

Tableau 1.1: Production en énergie électrique de 2016 à 2018 

Site de production 
Production par année (MWH) 

2016 2017 2018 

Centrale Akpakpa 0 0 0 

Aggreko Gbégamey + Akpakpa 88623 44181 6802 

Aggreko Maria Gléta 0 19537 6022 

MRI Vèdoko 57612 16645 2467 

MRI Parakou 15550 2903 2918 
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Site de production 
Production par année (MWH) 

2016 2017 2018 

APR Maria Gléta 0 2655 1107 

TAG 80 MW Maria Gléta 0 0 0 

Zou_Collines (Ouèssè) 0 0 0 

Ouémé (centrale Wärtsilä Porto Novo) 14 295 240 

Borgou (centrale Wärtsilä Parakou) 0 151 493 

Atacora (centrale Wärtsilä Natitingou) 1140 1238 278 

Total 162940 87605 20328 

  

La SBEE disposait de plusieurs centrales installées dans les Départements de 

l’Atacora, de l’Ouémé et du Borgou. Ces centrales venaient en appui pour combler les 

manques d’énergie en cas d’urgence. Elles sont dorénavant classées dans le patrimoine de la 

SBPE. Actuellement, la SBEE n’a plus dans ses attributions la production d’énergie 

électrique depuis la création de la SBPE. 

1.2.2. Communauté Électrique du Bénin (CEB) 

Le 27 juillet 1968, les Chefs d’État du Bénin et du Togo d’alors ont eu la volonté de 

créer la Communauté Électrique du Bénin (CEB). Leur vision commune est de doter les 

deux pays d’une structure capable de produire et de transporter de l’énergie électrique de 

qualité à moindre coût. 

1.2.2.1.  Présentation de la CEB 

La CEB est chargée du développement du secteur de l’électricité sur les territoires des 

deux États qui lui ont donné vie. Toutefois, depuis 2019, la CEB est devenue seulement 

gestionnaire du réseau de transport et exploitant des deux turbines de Nangbéto. 

1.2.2.2.  Mission de la CEB 

La CEB étant le deuxième acteur principal du secteur d’électricité béninois, elle a pour 

mission le transport de l’énergie électrique pour le compte des deux pays le Bénin et le Togo. 

1.2.2.3.  Structure organisationnelle 

La CEB est composée de six (06) directions notamment : 

• La Direction Générale, 

• La Direction Technique, 

• La Direction des Marchés, 

• La Direction du Contrôle de Gestion, de l’Informatique et de la Statistique, 
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• La Direction de l’Administration et des Ressources Humaines, 

• La Direction Financière et de la Comptabilité, 

• La Direction des Études, de la Planification et des Projets. 

Les autres Directions assistent le Directeur Général pour l’accomplissement de ses 

fonctions. 

1.2.2.4.  Les activités de la CEB 

Elles englobent la construction du réseau et l’exploitation des postes électriques de 

transport. La CEB effectue la maintenance préventive et curative des ouvrages électriques 

de son réseau, élabore la facturation de l’énergie électrique qui transite via le réseau de 

transport, planifie la demande, réalise des études, recherche des financements pour des 

projets et assure leur suivi. 

Par ailleurs, la CEB dispose d’un centre de formation dénommé Centre de Formation 

Professionnelle et de Perfectionnement (CFPP), grâce auquel il propose des programmes de 

perfectionnement et des formations spécialisées aux métiers de l’électricité. 

1.2.3. Système d’Échanges d’Énergie Électrique Ouest Africain 

1.2.3.1. Présentation de l’EEEOA 

Le Système d’Échanges d’Énergie Électrique Ouest Africain (EEEOA) a été créé en 

1999 au cours du 22ème sommet de la Conférence des Chefs d’État et de Gouvernement de 

la CEDEAO. Il regroupe en son sein les sociétés d’électricité des États membres signataires 

de la convention du système EEEOA et a pour responsabilité de développer des 

infrastructures électriques [15]. 

Au 29ème sommet des Chefs d’État et de Gouvernement de la CEDEAO en janvier 

2006, il y a eu l’adoption et la Conférence d’établissement de la CEDEAO par décision N° 

A/DEC.18/01/06.  

Actuellement l’EEEOA compte quatorze (14) Etats membres de la sous-région. La 

figure suivante présente la carte des pays de la Communauté Economique Régionale [15]. 
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Figure 1.1: Carte présentant les 14 pays membres de la communauté économique régionale 

1.2.3.2.  Mission de l’EEEOA 

L’EEEOA assure la coordination des échanges d’électricité entre les pays membres de 

la CEDEAO, la promotion ainsi que le développement des infrastructures de production et 

de transport d’énergie électrique [16]. 

1.2.3.3.  Structure organisationnelle 

Pour accomplir sa mission, l’EEEOA peut compter sur ses organes, 

notamment l’Assemblée Générale qui est l’instance de décision suprême de l’EEEOA, qui 

regroupe l’ensemble des sociétés membres, le Conseil Exécutif, les Comités et le Secrétariat 

Général [16]. 

1.2.3.4.  Activités 

L’EEEOA s’occupe de la construction et de l’exploitation des systèmes d’échanges 

d’énergie électrique entre les pays membres de la CEDEAO. Il exécute des travaux de 

maintenance préventive et curative des éléments des systèmes d’échanges d’énergie 

électrique. 

1.2.4. Autorité de Régulation Régionale du secteur de l’Électricité de la CEDEAO 

1.2.4.1. Présentation 

L’Autorité de Régulation Régionale du secteur de l’Électricité de la CEDEAO 

(ARREC) est le régulateur d’échanges transfrontaliers d’électricité en Afrique de l’Ouest. 

En effet, les États membres de la CEDEAO ont pris l’engagement d’effectuer des 

interconnexions électriques afin de mettre en commun et d’optimiser le partage des 

ressources énergétiques de la région. Cet engagement se traduit par l’adoption d’un certain 
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nombre de dispositions destinées à instaurer un environnement institutionnel et juridique 

approprié au développement du secteur de l’électricité de la région [17]. 

La Conférence des Chefs d’États de la CEDEAO met alors en place en janvier 2008, 

par acte additionnel N° A/SA.2/01/08, l’Autorité de Régulation Régionale du secteur de 

l’Électricité de la CEDEAO dans le cadre du Système d’Échanges d’Énergie Électrique 

Ouest Africain (EEEOA) [17]. 

1.2.4.2.  Mission de l’ARREC 

L’ARREC a pour mission principale de garantir le niveau de revenus nécessaire aux 

sociétés d’électricité et de déterminer les combinaisons tarifaires et subventions 

compensatoires requises [18]. 

1.2.4.3.  Structure organisationnelle 

Le Système d’Échanges d’Énergie Électrique Ouest Africain (EEEOA) dispose d’un 

Conseil de Régulation qui est l’organe de direction et de gestion de l’ARREC. Cet organe 

est constitué de trois membres nommés pour un mandat fixe de cinq ans, non renouvelable. 

Un groupe d’experts en charge des questions liées à la régulation et une unité en charge 

des Ressources humaines, de l’Administration et des Finances assistent le Conseil de 

Régulation dans ses attributions [19]. 

1.2.5. Autorité de Régulation de l’Électricité (ARE) 

1.2.5.1.  Présentation de l’ARE 

L’Autorité de Régulation de l’Électricité (ARE) est un établissement public, un organe 

indépendant doté d’une personnalité morale et de l’autonomie financière. Elle a été créée 

pour assurer le respect des réglementations et des lois dans le secteur d’électricité, la qualité 

du service, ainsi que la stabilité financière du secteur. 

1.2.5.2.  Mission 

L’Autorité de Régulation de l’Électricité a été créée par décrets N° 2009-182 du 13 

mai 2009 et N°2015 – 074 du 27 février 2015 portant modification des articles 3, 8, 18 et 19 

du décret n°2009-182 du 13 mai 2009. Elle veille, entre autres, au respect des textes 

législatifs et règlementaires régissant le secteur de l’électricité au Bénin afin de protéger 

l’intérêt général, de garantir la continuité et la qualité de service, l’équilibre financier du 

secteur et son développement harmonieux. 
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1.2.5.3.  Structure organisationnelle 

Placée sous l’autorité du Président de la République, l’Autorité de Régulation de 

l’Électricité est dirigée par un Président qui exerce ses fonctions avec six membres qui sont 

tous nommés. 

1.2.5.4.  Activités de l’ARE 

L’ARE s’occupe du respect des normes en matière de production, de transport de 

distribution de l’énergie électrique, à la continuité et la qualité du service public de 

l’électricité, à l’approbation des grilles tarifaires avant leur publication par l’État. Elle vérifie 

également leur application, à l’approbation du modèle de contrat d’achat et vente d’énergie 

électrique. 

1.2.6. Production Indépendant d’Électricité (PIE ou IPP) 

Les Producteurs Indépendants d’Electricité (PIE ou IPP) sont des producteurs titulaires 

d’un titre d’exploitation les autorisant à établir, gérer et maintenir une installation de 

production. Généralement, cette installation de production utilise des sources d’énergies 

renouvelables pour produire de l’électricité destinée exclusivement à la vente aux 

gestionnaires de réseau interconnectés (transport ou distribution) ou à l’exportation. 

Toutefois, il existe des producteurs d’électricité hors-réseau qui se servent d’énergies 

renouvelables. Ils sont titulaires d’un titre d’exploitation d’un système hors réseau, pour 

l’activité intégrée de production, de distribution et de fourniture d’électricité de service 

public. 

1.2.6.1.  Mission 

L’objectif principal des Producteurs Indépendants d’Électricité est de produire de 

l’énergie électrique renouvelable pour transport, distribution ou exportation. 

1.2.6.2.  Activités 

Ces producteurs construisent des centrales de production électrique et procèdent à son 

exploitation. Ils font la maintenance préventive régulière pour la fiabilité des centrales. 

1.2.7. Ministère de l’Industrie et du Commerce 

1.2.7.1.  Présentation 

Le Ministère de l’Industrie et du Commerce est le département ministériel d’échanges 

du gouvernement. Il a sous sa tutelle d’une part des sociétés d’importation, d’exportation et 
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de distribution des produits pétroliers et d’autre part des sociétés de transformation des 

différents produits [20]. 

Le Ministère de l’Industrie et du Commerce s’occupe de l’importation et de 

l’exportation des sources d’énergie d’origine fossile, des énergies renouvelables. 

1.2.7.2.  Mission 

Le Ministère de l’Industrie et du Commerce a en charge la mise en œuvre, le suivi et 

l’évaluation de la politique générale de l’État en matière de promotion de l’industrie, du 

commerce intérieur et extérieur conformément aux lois et règlements en vigueur en 

République du Bénin [21]. 

1.2.7.3.  Structure organisationnelle 

Le Ministère de l’Industrie et du Commerce est dirigé par un Ministre, membre du 

gouvernement. Pour bien accomplir sa mission, il collabore avec plusieurs directions 

techniques. Il s’agit notamment de la : 

• Direction du Développement Industriel qui élabore et veille à la mise en 

œuvre de la politique nationale en matière de la promotion, d’autorisation, de la 

règlementation et du contrôle des activités industrielles mises en œuvre sur le 

territoire béninois ; 

• Direction du Commerce Intérieur qui propose et veille à la mise en œuvre 

de la politique nationale en matière du commerce intérieur ; 

• Direction de la Concurrence dont les attributions sont la proposition et la 

veille pour la mise en œuvre de la politique nationale de la lutte contre la fraude 

commerciale, la concurrence déloyale et les pratiques anti-concurrentielles ; 

• Direction du Commerce Extérieur dont les attributions regroupent 

l’élaboration et la veille pour la mise en œuvre de la politique nationale en matière 

de commerce extérieur. 

Le Ministre fixe par décret l’organisation et le fonctionnement des directions 

techniques et départementales. 

En plus des directions techniques énumérées précédemment, il existe des organismes 

qui sont placés sous tutelle du Ministère. Entre autres, il s’agit de : 

• L’Agence nationale de Normalisation, de Métrologie et du Contrôle Qualité 

qui a pour mission la mise en œuvre et le suivi-évaluation de la politique nationale 
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de normalisation, de métrologie, de certification, de vérification des produits et de 

la promotion de la qualité ; 

• Le Bureau de la Restructuration et de la Mise à Niveau (BRMN), créé par 

arrêté N° 08-063/MCPEA/SG/DGDI, du 08 mars 2008. Il met en œuvre les 

décisions et est en contact direct avec les entreprises. Il est placé sous l’autorité 

directe du Comité de Pilotage National (CPN) ; 

• Le Cadre intégré renforcé ; 

• La Chambre de Commerce et d’Industrie du Bénin ; 

• La Société sucrière de Savè ; 

• La Société des Industries textiles du Bénin ; 

• La Compagnie Béninoise des Textiles. 

 

1.2.8. Ministère de Cadre de Vie, des Transports en charge du Développement Durable 

1.2.8.1.  Présentation 

Anciennement connu sous l’appellation de Ministère de l’Environnement, de l’Habitat 

et de l’Urbanisme (MEU) jusqu’en avril 2016, le Ministère du Cadre de vie et des Transports, 

en charge du Développement Durable (MCVTDD) est un acteur important dans la 

construction d’un cadre de vie agréable et dans la promotion du développement durable. 

Le développement du secteur de l’électricité présente plusieurs externalités, positives 

comme négatives, sur le cadre de vie. Pour cela, le Ministère de Cadre de Vie et du 

Développement Durable devient un acteur à prendre en compte dans l’analyse du 

fonctionnement de ce secteur. 

1.2.8.2.  Missions 

En vertu des articles 20, 46, 50, 55, 86, 88 de la loi cadre sur l’environnement en 

République du Bénin, le Ministère de Cadre de Vie et du Développement a pour mission de 

concevoir et de mettre en place des politiques et stratégies pour l’État en relation avec 

l’environnement. La pertinence et l’efficacité de l’environnement l’obligent à surveiller et à 

évaluer ces politiques et stratégies [22]. 

Par ailleurs, la promotion des énergies nouvelles et renouvelables, dans le secteur 

électrique, pour la production de l’énergie biomasse demande essentiellement 

l’accompagnement du MCVTDD afin de garantir toutes les ressources forestières 

appropriées au Ministre en charge de l’énergie [23]. 
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1.2.8.3.  Structure organisationnelle 

Le MCVTDD est composé de structures rattachées au Cabinet, de directions centrales, 

de directions techniques, des cellules [24]. Chaque partie de l’organigramme travaille en 

respectant les lois-cadres sur l’environnement en République du Bénin. 

1.3.  CADRE JURIDIQUE DU SECTEUR DE L’ELECTRICITE AU BENIN 

Dans cette section, nous discuterons des lois qui régissent le secteur de l’énergie 

électrique au Bénin. 

Les États béninois et togolais ont élaboré depuis le 27 juillet 1968 le code Bénino-

Togolais afin de réglementer les activités de ce sous-secteur [20]. Cependant, ce code n’a 

pas favorisé la contribution des acteurs privés au développement du secteur. Ce n’est qu’avec 

la révision du code, le 23 décembre 2003, que les choses se sont améliorées et que des 

conditions plus favorables à l’intervention de producteurs indépendants se sont installées. 

La CEB adopte désormais le statut d’acheteur unique. 

Par ailleurs, la loi 2006-16 du 27 mars 2007 portant code de l’électricité en République 

du Bénin vient renforcer l’arsenal juridique du Bénin, dans le cadre de la régulation du 

secteur de l’énergie électrique. Cette nouvelle loi, complète celle commune au Bénin et au 

Togo, en définissant la politique générale d'organisation du secteur de l'électricité, le cadre 

juridique au sein duquel sont exercées les activités inhérentes au secteur ainsi que les 

modalités de participation des entreprises privées, notamment le régime de propriété et 

d’usage des installations électriques situées sur le territoire national [25], [20], [3]. 

La loi 2020-05 du 1er avril 2020 constitue le dernier instrument du cadre juridique 

régissant le secteur de l’énergie électrique au Bénin. Cette loi a complété les lois citées 

précédemment et précisé les missions de l’ARE, les règles et les lois concernant 

l’environnement dans le secteur de l’électricité. 

1.4.  RESEAU ELECTRIQUE BENINOIS 

Le fonctionnement optimal du réseau électrique béninois fait appel à trois expertises 

interconnectées : la production, le transport et la distribution. Bien que dépendantes les unes 

des autres, elles sont toutefois assurées par trois différents acteurs principaux : la SBEE, la 

SBPE et la CEB. L’objectif derrière cette subdivision est d’assurer un fonctionnement 

optimal du réseau électrique.  
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1.4.1. Réseau de transport 

Les centres de production constituent la première étape dans le transport de l’énergie 

électrique. L’électricité ainsi produite est relayée par des postes sources ou sous-stations, au 

travers de lignes électriques de différents niveaux de tension : 63 kV, 161 kV et 330 kV [3]. 

Par ailleurs, soulignons que le réseau de transport béninois est interconnecté avec ceux 

du Nigéria et du Togo. 

1.4.2. Réseau de distribution 

Pour assurer la commercialisation de l’énergie électrique sur toute l’étendue du 

territoire national, la SBEE utilise différents niveaux de tension : 63 kV, 33 kV, 20 kV et 15 

kV. Elle exerce son autorité sur la totalité du réseau basse tension (BT et utilise les niveaux 

de tension 33 kV, 20 kV et 15 kV pour la desserte des postes de répartition et de distribution 

HTA [26]. 

La vétusté du réseau de distribution et la surcharge des postes de distribution causent 

des dommages aux clients et à la SBEE. On note également des baisses de tension qui 

empêchent le fonctionnement normal des compteurs à prépaiement. Des perturbations 

s’observent également sur le réseau, notamment des coupures électriques intempestives. Le 

tableau 1.2 présente l’évolution et les différentes catégories de perturbations sur le système 

électrique observées en 2022 et 2023 [27]. 

Tableau 1.2: Nombre de perturbations recensées sur le réseau électrique 2022 & 2023 

Année Jan Fev Mar Avr Mai Juin Juil Août Sep Oct Nov Dec 

2022 319 328 586 654 713 854 589 516 592 577 471 354 

2023 545 549 899 718 953 918 793 760 1094 976 669 669 
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Figure 1.2: Evolution du nombre de perturbations du réseau électrique 2022 & 2023 

La figure 1.2 illustre l'évolution mensuelle du nombre de perturbations du réseau 

électrique en 2022 et 2023. 

En 2022, le nombre de perturbations augmente progressivement entre janvier et juin, 

atteignant un pic en juin, avant de diminuer régulièrement jusqu'à la fin de l'année. En 

revanche, en 2023, les perturbations sont plus nombreuses sur l'ensemble de l'année, avec 

un pic notable en septembre. Cependant, on observe une baisse progressive à partir d'octobre, 

qui se stabilise en décembre. 

Comparativement, la courbe de 2023 se situe globalement au-dessus de celle de 2022, 

indiquant une tendance générale à une augmentation des perturbations en 2023. Les mois de 

juin et décembre sont des exceptions où la tendance de 2023 est similaire ou légèrement 

décroissante, comparée à celle de 2022. 

La figure 1.2 met en évidence une saisonnalité potentielle, avec des périodes de hausse 

et de baisse régulières au cours des deux années, bien que les volumes totaux soient 

significativement plus élevés en 2023. 

1.5.  MOYENS DE PRODUCTION DE L’ENERGIE AU BENIN 

L’énergie électrique est produite au moyen de centrales électriques. Elles utilisent des 

énergies primaires (gaz naturel, HFO, gasoil, rayonnement solaire, énergie potentielle de 

l’eau) qu’elles transforment en énergie secondaire (électricité) [28]. 
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Pour aborder cette section de notre mémoire, nous présenterons le parc national de 

production avant d’aboutir sur une discussion du système d’approvisionnement externe en 

énergie électrique. 

1.5.1. Parc national de production 

Le parc national de production est composé de centrales électriques thermiques, 

solaires photovoltaïques et hydroélectriques et dispose en 2019, d’une puissance totale 

installée de 177,5 MW [13]. Actuellement la disponibilité du parc est de 134 MW. 

Le Bénin possède quatre (04) centrales électriques thermiques. Il s’agit des centrales 

thermiques de Maria-Gléta 2, Porto-Novo, Natitingou et Parakou. Ces centrales ont des 

puissances installées et des puissances disponibles réparties comme suit : 

• Maria Gléta 2, avec une capacité installée de 127 MW pour une disponibilité 

de 105 MW. Cette centrale est alimentée par le gaz naturel et le fioul lourd (HFO). 

• Porto-Novo, d’une puissance installée de 14 MW avec une disponibilité de 8 

MW est alimentée par le gasoil.  

• Natitingou, avec une puissance installée de 12 MW, dispose aujourd’hui 3 

MW et utilise de gasoil pour son fonctionnement. 

• Parakou d’une puissance installée de 12 MW et disponible de 3 MW, cette 

centrale fonctionne avec le gasoil. 

La seule centrale solaire photovoltaïque, DEFISSOL, possède une capacité installée 

de 25 MW crête et délivre actuellement une puissance de 15 MW. Elle attend une extension 

de 25 MW crête pour avoir une puissance totale installée de 50 MW crête. Le dernier type 

de centrale, la centrale hydroélectrique est installée à Yéripao, à Natitingou, avec une 

capacité de 480 kW. 

La centrale thermique de Maria Gléta 2 dispose de moteurs dual fuel (gaz-HFO). Elle 

a été mise en exploitation avec une puissance de 127 MW en août 2019 [29]. La centrale 

solaire photovoltaïque et celle de Maria Gléta 2 ont contribué à augmenter le niveau 

d’autosuffisance énergétique du pays de 39,88% en 2019 à 64,95% en 2020 [1]. 

Les centrales thermiques de Porto-Novo, de Parakou et de Natitingou ont atteint le 

nombre d’heures de révision. Quant à la centrale hydroélectrique de Yéripao, la seule turbine 

dont elle dispose nécessite une réhabilitation et il faudrait l’installation de la deuxième 

turbine afin de bénéficier de la totalité de l’eau du barrage pendant la saison pluvieuse. De 
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plus, quatre (04) centrales solaires photovoltaïques sont en construction à Bohicon, Parakou, 

Djougou et Natitingou avec une capacité totale de 50 MW crête. 

1.5.2. Approvisionnements externes en énergie électrique 

Les approvisionnements externes en énergie électrique proviennent essentiellement 

des centrales (hydroélectrique et TAG) de la CEB et des pays voisins notamment le Nigéria, 

le Ghana et la Côte d’Ivoire via respectivement la TCN, la VRA et la CIE. 

La CEB avait auparavant le statut d’acheteur unique que lui conférait le code Bénino-

Togolais du 27 juillet 1968. Cependant le décret n°2020-565 du 02 décembre 2020 lui confie 

dorénavant le transport de l’énergie sur son réseau électrique reliant le réseau du Nigéria et 

celui du Ghana. 

 Les postes sources primaires de la CEB assurent le transit de l’énergie importée. Ces 

postes desservent les postes sources secondaires et postes de répartition de la SBEE.  

1.6.  CONCLUSION PARTIELLE 

Ce chapitre a fait l’état des lieux du secteur de l’énergie électrique en prenant en 

compte les acteurs principaux intervenant dans le secteur de l’électricité. Le présent travail 

s’attèle à présent à étudier et à répertorier les différents travaux de recherche qui se sont 

intéressés à la modélisation de la demande électrique dont les résultats pourraient fournir de 

précieuses informations. 
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Chapitre 2. Revue de littérature sur les modèles de prévision de la  

   demande d’énergie 

2.1.  INTRODUCTION PARTIELLE 

Ce chapitre dont l’objectif principal est de faire une cartographie des travaux de 

recherche effectués dans le sillage du domaine du présent mémoire est subdivisé en deux 

grandes parties. La première partie est consacrée aux différents modèles dans la littérature 

tandis que la seconde met en exergue les diverses métriques habituellement utilisées pour 

évaluer la performance des modèles construits. 

2.2.  ETAT DE L’ART SUR LES MODELES DE PREVISION DE DEMANDE 

D’ACHAT EN ELECTRICITE 

 L’énergie électrique est un bien également soumis au principe de rareté. Pour une 

allocation optimale des ressources disponibles, il faut une planification vraiment rigoureuse 

et efficace. Dans ce contexte, la prévision de la demande en énergie électrique revêt d’une 

importance capitale d’autant plus qu’elle permet d'atteindre un certain équilibre entre l’offre 

et la demande. 

Dans les pays en développement, l’exercice de prévision de la demande est crucial en 

raison des défis socio-économiques qui les caractérisent. 

2.2.1. Méthodes de régression linéaire multiple 

La régression linéaire multiple (RLM) est l'une des méthodes les plus simples et les 

plus utilisées pour la prévision de la demande en électricité. Cette méthode repose sur 

l'hypothèse qu'une relation linéaire existe entre la demande d'électricité et un ensemble de 

variables explicatives notamment : 

• La température, 

• La croissance économique, 

• La population, 

• La croissance démographique. 

Une des métriques souvent utilisées pour évaluer la précision des modèles de 

régression est l'erreur absolue moyenne ou Mean Absolute Error (MAE) [30]. Les modèles 

de régression sont particulièrement adaptés pour des prévisions à court terme. Plusieurs 

recherches considèrent le court terme comme un horizon temporel allant de quelques heures 

à plusieurs jours [31], [32], [33]. La régression linéaire a, par exemple, été utilisée pour 
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développer des modèles de prévision de la demande à court terme, sur un horizon de 24 

heures, au Togo avec une Mean Absolute Percentage Error (MAPE) de moins de 5% [34]. 

En Afrique du Sud, elle a été utilisée en tenant compte de variables comme la température 

et l'activité économique [35] pour prédire la demande d’électricité par année. 

Les résultats montrent une bonne précision dans des conditions stables, mais les 

fluctuations saisonnières et les chocs peuvent réduire l’efficacité de ces modèles. En effet, 

la rigidité de la régression linéaire ne permet pas de bien capter les effets non-linéaires de 

certains facteurs, ce qui représente une limite importante, surtout dans les contextes où les 

données sont limitées ou de faible qualité [36]. De plus, ces environnements sont marqués 

par des taux de croissance économiques imprévisibles et des événements politiques ou 

climatiques inattendus qui affectent grandement la demande en électricité. C'est pourquoi la 

régression linéaire multiple est souvent complétée par d'autres approches plus robustes et 

flexibles. 

2.2.2. Analyse des séries chronologiques 

L'analyse des séries chronologiques est une autre méthode largement utilisée dans la 

prévision de la demande en électricité. Elle s'appuie sur l'étude des données historiques pour 

identifier des schémas, des tendances et des cycles, afin de prédire les fluctuations futures 

de la demande. Ce type d'approche est fréquemment utilisé au Sénégal, où des chercheurs 

comme Diagne [37], ont, par exemple, mis en place des modèles de ce type. 

Le modèle ARIMA est largement utilisé dans les prévisions énergétiques en raison de 

sa simplicité et de son efficacité pour modéliser des données temporelles stationnaires. Une 

autre variante de ARIMA est le modèle ARIMAX qui, contrairement à ARIMA, prend des 

variables exogènes en plus de la variable prédite. C’est un modèle utilisé par DANGBEDJI 

[20] dans le cadre de ses travaux de modélisation numérique de la prévision de la demande 

en électricité au Bénin. Il explore également l'utilisation de techniques telles que le bootstrap, 

qui permettent de simuler des distributions statistiques et de mesurer l'incertitude des 

prévisions, en particulier pour les consommations fluctuantes tout au long de l'année. 

Cependant, les limites du modèle ARIMA sont apparues dans des contextes où les 

séries temporelles présentent des tendances non linéaires et des effets saisonniers marqués. 

Les auteurs soulignent que la complexité des facteurs socio-économiques et climatiques en 

Afrique de l’Ouest rend parfois difficile l'application de ce modèle sans ajustement 

supplémentaire. 
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Pour contourner les limites d’ARIMA, une dimension saisonnière est intégrée avec le 

modèle SARIMA lorsque la série présente des schémas de saisonnalité. L'avantage du 

modèle SARIMA est sa capacité à mieux gérer les pics saisonniers, souvent observés dans 

les pays où la consommation énergétique varie avec les conditions météorologiques 

(notamment l'usage de climatisation). Cette méthode a été également utilisée au Sénégal par 

Ndiaye et al. Les résultats produits par le modèle SARIMA, une MAE de 0.166997, bien 

qu’intéressants étaient inférieurs à ceux produits par le second modèle [38]. Toutefois, l'étude 

a souligné que l'efficacité de ce modèle dépend de la qualité des données disponibles et de 

la capacité à ajuster les paramètres saisonniers avec précision. 

Comme l’a mentionné l’étude de Ndiaye et al, les réseaux de neurones artificiels sont 

de plus en plus utilisés dans la prévision de la demande d’énergie, car ils peuvent capturer 

des schémas non linéaires complexes dans les séries temporelles. Ils sont connus pour 

permettre de prévoir la demande en énergie électrique du jour prochain avec une erreur de 

4.86 % par rapport à la consommation réelle [39]. 

Lorsqu’il a été utilisé, le modèle LSTM a produit de meilleurs résultats, face au modèle 

SARIMA, avec une MAE de 0.148597 [38]. De même, l’utilisation de ces modèles dans 

l’Etat de Lagos, au Nigeria, pour la prévision de la demande en énergie électrique a démontré 

une performance de 97%, avec un faible niveau de root mean squared error (RMSE). L’étude 

a conclu que les réseaux de neurones sont vraiment pertinents pour la prévision [36]. 

Par ailleurs, malgré ces belles performances, les réseaux de neurones nécessitent de 

grandes quantités de données pour un entraînement optimal, ce qui représente parfois un défi 

en Afrique de l’Ouest, où la collecte de données fiables est très souvent limitée. 

2.2.3. Modèles Long Terme et Approche Multisectorielle 

Les modèles de prévision à long terme, tels que ceux utilisés au Ghana et au Nigeria, 

se concentrent sur les dynamiques économiques et industrielles à grande échelle. 

Le Nigeria adopte une approche plus sophistiquée en combinant des modèles bottom-

up basés sur la demande sectorielle et des modèles top-down macroéconomiques pour 

estimer la demande future. Au Nigeria, Energy Outlook intègre un modèle à deux volets, où 

les demandes des secteurs résidentiel et industriel sont modélisées séparément, en fonction 

de variables telles que le PIB, la démographie, et la disponibilité des infrastructures 

énergétiques [40]. 
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Les méthodes de prévision de la demande au Ghana combinent des approches 

économétriques et des analyses par simulation. Un modèle d'équilibre partiel qui relie 

l'évolution des prix de l'énergie, la croissance économique, et la consommation par secteur. 

Les prévisions sont ajustées avec des données en temps réel provenant du réseau électrique, 

notamment pour les pertes de transmission et l'exportation d'électricité vers des pays voisins 

comme le Bénin, le Togo et le Burkina Faso. Le modèle prend également en compte les 

investissements dans les énergies renouvelables, qui ajoutent une variabilité dans les 

projections à cause de l'intermittence des sources solaires et hydroélectriques. 

L'approche multisectorielle au Nigeria est également une méthode efficace pour 

intégrer les dynamiques propres à différents secteurs économiques. Cette méthode permet 

une vision plus globale de la demande énergétique, en tenant compte des interactions entre 

les secteurs industriel, résidentiel et commercial, et en anticipant ainsi les besoins en 

infrastructure électrique. 

Les modèles à long terme sont toutefois fortement dépendants de la précision des 

hypothèses sur la croissance économique et la stabilité politique, deux éléments souvent 

incertains dans les pays d'Afrique de l'Ouest, ce qui peut rendre leurs prévisions obsolètes 

en cas de perturbations majeures. 

2.2.4. Modèles GARCH 

Les modèles GARCH (Generalized Autoregressive Conditional Heteroskedasticity) 

ont été introduits par Bollerslev en 1986 pour étendre les modèles ARCH d’Engle (1982). 

Cette avancée a permis de capturer les fluctuations conditionnelles de la variance dans des 

séries temporelles, une caractéristique cruciale pour les séries marquées par une 

hétéroscédasticité conditionnelle, comme celles observées dans les domaines financiers et 

énergétiques. Depuis leur introduction, ces modèles ont été largement adoptés pour 

modéliser la volatilité et améliorer les prévisions dans divers contextes, y compris la 

demande énergétique. 

Les travaux de YOTTO [41], qui expliquent que l’horizon horaire pour du court terme 

peut aller de quelques heures à plusieurs semaines, représentent une application notable des 

modèles GARCH en Afrique de l’Ouest. En combinant des modèles ARIMA et GARCH, 

l’auteur a pu modéliser les séries temporelles de consommation électrique au Bénin. Son 

approche méthodologique comprenait la vérification de la stationnarité des séries à l’aide du 

test ADF et l’utilisation de la méthode Box-Jenkins pour déterminer les paramètres optimaux 
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des modèles ARIMA. Une fois les modèles ARIMA ajustés, les modèles GARCH ont été 

intégrés pour modéliser la volatilité conditionnelle. Les résultats de YOTTO ont montré que 

le modèle ARIMA (0,1,1) – GARCH (1,1) offrait un MAPE inférieur à 1 % (0,985 %). Cette 

précision a permis d’estimer des pics de demande énergétique à 595 MW et une 

consommation totale entre 4 100 et 4 200 GWhs pour l’horizon 2030 [41]. YOTTO a 

également souligné les défis liés à la qualité des données et recommandé l’intégration de 

variables exogènes comme les conditions météorologiques et les indicateurs économiques 

pour améliorer les performances du modèle. En outre, il a préconisé l’exploration de modèles 

hybrides combinant GARCH avec des techniques d’intelligence artificielle, telles que les 

réseaux de neurones, pour pallier les limitations des modèles GARCH seuls. Une autre étude 

notable est celle de Kibala Kuma [42], menée sur l’utilisation des modèles ARCH, GARCH 

et leurs variantes avancées pour modéliser des séries temporelles marquées par une forte 

volatilité, en particulier dans le domaine énergétique. L’objectif principal de ces travaux était 

d’examiner la performance comparative des modèles standards (ARCH) et GARCH) par 

rapport à leurs extensions plus complexes (EGARCH et TGARCH), afin d’identifier les 

meilleures approches pour la prévision dans des contextes dynamiques et asymétriques. 

Dans son étude, Kuma s’est concentré sur des séries temporelles énergétiques provenant de 

marchés où les fluctuations sont influencées par des facteurs saisonniers, économiques et 

technologiques. Il a analysé des données couvrant une période de dix ans, incluant des 

informations sur la consommation énergétique, les prix de l’électricité et des variables 

explicatives exogènes telles que les températures, les jours fériés et les tendances 

macroéconomiques. Les modèles ont été estimés en utilisant des méthodes robustes de 

maximum de vraisemblance, et leur performance a été évaluée à l’aide de métriques 

standards telles que le MAPE, le RMSE et les tests de Ljung-Box pour vérifier la qualité de 

l’ajustement [42]. 

Les résultats ont montré que les modèles EGARCH surpassaient les autres variantes, 

en particulier pour capturer les asymétries dans les données, où les chocs positifs 

(augmentation de la demande) et négatifs (réduction soudaine de la consommation) n’ont 

pas les mêmes impacts sur la variance conditionnelle [42]. Le modèle EGARCH a également 

démontré une meilleure capacité à modéliser les périodes de forte volatilité, une 

caractéristique fréquente des marchés énergétiques soumis à des variations saisonnières ou 

à des changements structurels rapides. 

Cependant, Kuma a également identifié des limites importantes dans l’utilisation de 

ces modèles. Les variantes simples comme le GARCH standard se sont révélées inadéquates 
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pour capturer les tendances non linéaires complexes ou les ruptures structurelles importantes 

dans les données [42]. Par ailleurs, l’efficacité des modèles dépendait fortement de la qualité 

des données utilisées. Kuma a souligné la nécessité d’un prétraitement rigoureux des séries 

temporelles, notamment pour gérer les valeurs aberrantes, les données manquantes et les 

discontinuités. 

Dans l’ensemble, ces travaux convergent vers une reconnaissance des modèles 

GARCH comme outils puissants pour modéliser la volatilité et améliorer les prévisions 

énergétiques. Cependant, les défis persistent, notamment la sensibilité des modèles aux 

anomalies dans les données et leur incapacité à saisir les transformations structurelles. Les 

chercheurs s’accordent sur l’importance d’intégrer des variables exogènes, d’améliorer la 

qualité des données et d’explorer des modèles hybrides. Ces recommandations offrent des 

pistes prometteuses pour surmonter les limitations actuelles et optimiser l’utilisation des 

modèles GARCH dans des contextes particuliers comme celui du Bénin. 

2.2.5. Réseaux de Neurones Recurrents 

Les réseaux de neurones récurrents (RNN) se distinguent par leur capacité à capturer 

les relations temporelles dans des séries chronologiques complexes. Contrairement aux 

modèles traditionnels comme ARIMA, les RNN exploitent les dynamiques non linéaires des 

données, prenant en compte l’ordre et la dépendance temporelle inhérente. Ces propriétés en 

font des outils particulièrement adaptés à la prévision de la consommation énergétique, où 

les variations saisonnières et les comportements humains introduisent une forte non-linéarité 

dans les données. 

Les RNN intègrent une boucle récurrente qui transmet des informations d’un état 

temporel à un autre. Cela leur permet de "mémoriser" les informations passées pour 

influencer les prévisions futures. Cependant, cette architecture présente des défis majeurs, 

notamment le problème de gradient évanescent ou explosif. Ces limitations réduisent 

considérablement leur capacité à modéliser les dépendances sur de longues séquences 

temporelles, un aspect pourtant critique dans les prévisions énergétiques à long terme. 

Nachawati [43] a appliqué les RNN pour la prévision de la consommation énergétique 

multivariée en Finlande. Cette étude a montré que les RNN surpassent les modèles 

statistiques traditionnels pour des prévisions à court terme (moins de 72 heures). Néanmoins, 

leur performance diminue pour des prédictions à long terme, en raison de leur faible capacité 

de mémorisation des dépendances lointaines. Ces résultats mettent en lumière le niveau de 
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sophistication des architectures utilisées comme prérequis pour répondre aux exigences de 

précision dans ce domaine. 

Pour surmonter les limitations des RNN traditionnels, les modèles Long Short-Term 

Memory (LSTM) ont été développés. Introduits par Hochreiter et Schmidhuber en 1997 [44], 

les LSTM intègrent une architecture sophistiquée composée de cellules mémoire et de 

mécanismes de régulation appelés "portes" (input, forget et output). Ces éléments permettent 

de conserver et de gérer efficacement les informations importantes sur de longues périodes, 

tout en supprimant celles jugées non pertinentes. 

Nugaliyadde et al. [45] ont démontré l'efficacité des RNN et LSTM dans un contexte 

londonien, où ces modèles en atteignant une erreur quadratique moyenne (RMSE) de 0,1 

mettent en lumière leur performance pour les prévisions à court, moyen et long terme. 

Une autre avancée significative a été réalisée par Guimarães da Silva et Meneses, qui 

ont comparé les performances des LSTM unidirectionnels et bidirectionnels (BLSTM). Leur 

étude a révélé que les BLSTM surpassaient les LSTM classiques, grâce à leur capacité à 

intégrer des relations temporelles dans les deux directions, améliorant ainsi la précision des 

prévisions [46]. 

Par ailleurs, Al Khafaf et ses collaborateurs ont mis en évidence l'efficacité des LSTM 

pour des prévisions énergétiques, obtenant une erreur absolue moyenne en pourcentage 

(MAPE) de 3,15 % [47]. Leur approche innovante inclut la quantification du temps comme 

variable, améliorant les performances prédictives du modèle. 

Enfin, Marino et al., ont exploré l'application des LSTM pour la charge énergétique 

résidentielle, montrant que l'architecture Sequence to Sequence (S2S) basée sur LSTM 

performe efficacement sur des données horaires et à la minute [48], renforçant ainsi la 

pertinence des LSTM pour des contextes variés de prévision énergétique. 

Ces études, bien qu'ancrées dans des contextes différents, permettent d’avoir des idées 

intéressantes pour l'application des LSTM au contexte énergétique du Bénin, où la qualité 

des données souvent caractérisées par des variations saisonnières complexes et la complexité 

des séries temporelles nécessitent des approches avancées et inédites. 

Cho et al. [49] ont amélioré le fonctionnement des modèles LSTM pour réduire sa 

complexité en proposant en 2014 les modèles GRU. Ces modèles GRU ont été utilisés en 

2023 par Abumohsen et al. [50] pour la prévision d’électricité à court terme en Palestine. 

Dans leur recherche ils ont mis en évidence les modèles de mémoire à long terme (LSTM), 

l’unité récurrente gated (GRU) et le réseau neuronal récurrent (RNN). Parmi ces trois 

modèles évalués, le GRU se trouve performant avec le coefficient de détermination (R²) de 
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0,90228, l’erreur quadratique moyenne (MSE) de 0,00215 et l’erreur absolue moyenne 

(EAM) de 0,03266.  

En 2020, Sajjad et al. [51] ont réalisé dans leur recherche la combinaison des modèles 

convolutionnels (CNN) et l’unité récurrente gated (GRU) pour la prédiction de la 

consommation résidentielle à court terme en République de la Corée. La combinaison de ces 

deux modèles leur a permis d’avoir l’erreur quadratique moyenne (MSE) de 0,09, racine 

carrée de l’erreur quadratique moyenne (RMSE) de 0,31 et l’erreur absolue moyenne (MAE) 

de 0,24. 

2.2.6. Lissage exponentiel 

Le lissage exponentiel, méthode éprouvée pour analyser et prévoir les séries 

chronologiques, est au cœur des travaux de nombreux chercheurs. Cette section met en 

lumière les résultats et les contributions des auteurs Paweł Pełka et al, Abdi-Basid Ibrahim 

et Adan. Leurs études, bien que variées dans leur approche, illustrent l'efficacité et les limites 

de cette méthode dans des contextes divers. 

Dans leur étude, Paweł Pełka et al. [43] introduisent une approche hybride combinant 

l’efficacité des modèles statistiques classiques avec la flexibilité des réseaux de neurones 

récents. 

Dans cette étude, le lissage exponentiel (ETS) sert d’outil de décomposition initiale 

des séries temporelles. Il extrait les composantes de niveau et de saisonnalité, qui sont 

ensuite utilisées pour normaliser les données avant leur traitement par un réseau de neurones 

résiduel dilaté (RD-LSTM). Cette combinaison permet de tirer parti des forces respectives 

de ces méthodes : l’ETS pour sa simplicité et sa robustesse dans la capture des composantes 

saisonnières, et le RD-LSTM pour sa capacité à modéliser les dépendances non linéaires et 

à long terme. 

L’étude a été réalisée sur des données couvrant 35 pays européens. Parmi les métriques 

employées pour évaluer les performances du modèle figurent le RMSE et le MAPE. Les 

résultats montrent une réduction significative des erreurs, avec des RMSE généralement 

inférieurs à ceux des modèles classiques (tels que ARIMA ou ETS seul), 347,24 [52]. 

Des MAPE faibles : pour des pays comme l’Espagne (1,61 %), l’Italie (2,12 %) et 

l’Allemagne (2,29 %), les prévisions étaient particulièrement précises. Cependant, le 

Royaume-Uni, avec un MAPE de 8,52 %, a présenté des résultats moins convaincants en 

raison de variations inattendues de la demande [52]. 
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Les auteurs insistent sur l’une des limites notables du modèle : sa dépendance à des 

données de qualité, rendant son application complexe dans des environnements à ressources 

limitées. 

Adan [53] applique aussi le lissage exponentiel, pour analyser les séries économiques, 

en mettant un accent particulier sur la prévision de l’investissement. Il compare les 

performances de différentes méthodes, dont le lissage exponentiel simple et le modèle de 

Holt-Winters non saisonnier. 

Il s’appuie sur des métriques telles que le RMSE, le MAE, et le MAPE, pour évaluer 

l’efficacité des modèles. Les résultats montrent une supériorité du modèle de Holt-Winters 

par rapport au lissage exponentiel simple, avec les performances suivantes : 

• Lissage exponentiel simple : RMSE de 708,97, MAPE de 46,14 % [53]. 

• Holt-Winters : RMSE de 694,00, MAPE de 44,26 % [53]. 

Ces différences, bien que modestes, mettent en évidence l’intérêt d’intégrer des 

composantes de tendance et de saisonnalité pour améliorer les prévisions, en particulier dans 

des séries relativement régulières. 

Les prévisions à court terme réalisées avec Holt-Winters ont montré une meilleure 

précision, particulièrement en raison de sa capacité à intégrer des variations modérées de 

tendance. Toutefois, les deux modèles se sont avérés sensibles aux ruptures structurelles ou 

aux chocs économiques imprévus, limitant leur utilisation dans des contextes marqués par 

une volatilité importante. 

2.2.7. Modèles Additifs Généralisés (GAM) 

L’adaptabilité des modèles GAM en fait un outil prisé pour la prévision de la demande 

en électricité. Cette revue se concentre sur deux travaux récents : ceux de Caston Sigauke 

[54], qui applique les GAM dans le contexte sud-africain, et de Linxiao Yang [55], dont 

l’innovation porte sur un GAM interactif. 

Sigauke, dans son étude, explore une application innovante des GAM pour la prévision 

de la demande horaire d’électricité en Afrique du Sud, couvrant les années 2009 à 2013. 

L’auteur se distingue par une approche méthodique où la sélection des variables et les 

interactions entre celles-ci jouent un rôle central. 

En structurant son modèle autour du GAM-Lasso et de son extension GAM-Tensor-

Lasso, Sigauke combine l’élégance des bases statistiques avec la capacité des tenseurs à 

capter des relations croisées entre variables. La sélection des covariables est réalisée via 
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Lasso, une méthode de régression pénalisée qui réduit le risque de surajustement tout en 

gardant les facteurs pertinents, tels que la température, les variations saisonnières 

hebdomadaires et annuelles. 

Comparé à un modèle de gradient boosting utilisé comme benchmark, le GAM-

Tensor-Lasso a démontré une supériorité notable [54]. Cependant, au-delà de la simple 

comparaison de résultats, le véritable atout réside dans la capacité de ce modèle à capturer 

des non-linéarités complexes grâce aux interactions de tenseur. Les prévisions, mesurées par 

la fonction de perte en pinball, ont montré une meilleure précision pour les scénarios de 

demande moyenne et extrême. 

Un des points forts majeurs de cette étude est la prise en compte de deux régions 

climatiques sud-africaines, une variable clé dans la modélisation énergétique. Cela dit, la 

complexité de ce modèle accru due aux interactions de tenseur peut représenter un obstacle, 

en particulier au Bénin, où les ressources nécessaires pour tourner ces modèles sont limitées. 

À travers son article [55], Linxiao Yang propose une approche audacieuse et novatrice 

pour modéliser la demande électrique, en particulier dans des conditions extrêmes. 

Contrairement à Sigauke, Yang s’écarte des structures standard pour introduire un GAM 

interactif, conçu pour gérer à la fois des scénarios extrêmes et des ensembles de données 

restreints. 

Le modèle interactif de Yang se distingue par l’intégration de contraintes spécifiques 

définies par des experts du domaine, telles que la monotonie ou la convexité. Cette 

personnalisation, combinée à des techniques d’apprentissage boosté, permet de capturer des 

relations complexes que les GAM classiques auraient négligées [55]. De manière 

particulièrement élégante, ces contraintes assurent la stabilité des prévisions, même en 

présence de variations soudaines de la demande. 

Yang a évalué son modèle sur des ensembles de données publiques et industrielles, et 

les résultats ont été impressionnants. Comparé à des GAM standards comme PyGAM ou 

EBM, le GAM interactif a maintenu une précision remarquable, même sous des températures 

extrêmes (>40°C), un exploit rare dans la prévision énergétique. 

 Bien que prometteur, ce modèle présente des limites. Sa mise en œuvre exige des 

données bien structurées, une connaissance approfondie des contraintes et des ressources de 

calcul importantes. 
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2.2.8. Modèle Facebook Prophet 

Le modèle Prophet, développé par Facebook en 2017, s’est imposé comme un outil 

polyvalent et efficace pour la prévision de séries temporelles complexes. Reposant sur un 

modèle additif combinant des tendances non linéaires, des effets saisonniers, et des 

événements exceptionnels, Prophet est très souvent utilisé dans le domaine énergétique. 

Cette revue examine les applications et performances du modèle à travers les travaux de 

John Cockerill [56], Fatima Fahs [57], et Almazrouee et al. [38], en mettant en lumière ses 

forces, ses limites, et ses résultats. 

Dans le cadre de la gestion énergétique du site MiRIS, John Cockerill a comparé le 

modèle Prophet à d’autres modèles tels que SARIMAX et STL+ARIMA pour prédire la 

consommation électrique d’un site industriel. Prophet s’est distingué par une précision et 

une rapidité accrue [56]. L’étude rapporte que le modèle a atteint un RMSE de 33412 W, 

correspondant à seulement 6 % de la variation maximale, et un coefficient R² de 0,948, 

surpassant largement STL+ARIMA (R² = 0,507) et SARIMAX (R² =0,571). Prophet a 

également démontré une capacité unique à intégrer des paramètres spécifiques tels que les 

jours fériés et les variations saisonnières, offrant ainsi une flexibilité et une personnalisation 

inégalées. 

En outre, Fatima Fahs explore l’utilisation de Prophet pour prédire la consommation 

électrique résidentielle et tertiaire en France, notamment pendant les périodes de 

confinement dues à la pandémie de COVID-19. Prophet a intégré des « changepoints » pour 

modéliser les changements de tendance associés aux confinements. L'étude montre une 

réduction de l'erreur MAPE à 6,78 %, bien qu'elle souligne que l'amélioration reste modeste 

comparée aux méthodes manuelles utilisées par les fournisseurs [37]. 

Fahs met en avant la capacité de Prophet à gérer des données bruitées et des 

changements soudains de comportement grâce à son approche bayésienne et son algorithme 

robuste de détection des points de changement. Cependant, elle souligne que la qualité des 

prévisions dépend fortement de la configuration des paramètres, ce qui nécessite une 

expertise avancée pour optimiser le modèle. 

D’un autre côté, Almazrouee et al ont comparé Prophet au modèle Holt-Winters pour 

des prévisions à long terme de la consommation électrique au Koweït. Sur un horizon de 10 

ans, Prophet a surpassé Holt-Winters en termes de RMSE, MAPE, R², et CVRMSE, 

démontrant une meilleure robustesse face à des bruits gaussiens artificiellement ajoutés [58]. 

Cette étude met en évidence la résilience du modèle Prophet à des conditions de données 
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variées et à des niveaux de bruit différents, le plaçant comme une solution robuste pour les 

prévisions énergétiques à long terme. 

Enfin, toutes ces études démontrent que Prophet est un outil puissant pour les 

prévisions énergétiques, adapté à divers contextes. Ses principaux avantages incluent : 

• Précision élevée : Un RMSE et un R² compétitifs par rapport aux modèles 

traditionnels. 

• Flexibilité : Intégration aisée des jours fériés, gestion des tendances 

multiples, et personnalisation des paramètres. 

• Robustesse : Résistance au bruit et adaptabilité aux changements brusques 

de tendance. 

Cependant, Prophet nécessite une configuration minutieuse pour exploiter pleinement 

ses capacités, ce qui peut représenter un défi pour les utilisateurs moins expérimentés. 

2.2.9. Synthèse de la revue sur les modèles 

Les différents travaux recueillis de part et d’autre dans la littérature ont permis de 

réaliser le tableau 2.1 qui synthétise les forces et faiblesses de plusieurs modèles qui 

pourraient être utilisés afin de modéliser la demande en énergie électrique. 

Tableau 2.1: Cartographie des modèles 

Modèle Forces Faiblesses 

Régression 

linéaire 

multiple 

• Simplicité et accessibilité 

• Efficacité pour les prévisions à court 

terme 

• Bonne précision en conditions 

stables 

• Utilisation de variables explicatives 

• Incapacité à capturer les effets non-

linéaires 

• Limites dans des environnements instables 

• Dépendance aux données de qualité 

suffisante 

• Nécessité de compléter avec des approches 

robustes 

ARIMA & 

ARIMAX 

• Simplicité et efficacité 

• Prise en compte des variables 

exogènes (ARIMAX) 

• Mesure de l'incertitude (ARIMAX 

avec Bootstrap) 

• Précision dans des contextes 

stationnaires 

• Dépendance à la stationnarité des données 

• Limites face aux tendances non linéaires 

• Sensibilité aux ruptures structurelles 

• Difficulté à gérer les données manquantes 

ou bruitées 

SARIMA & 

SARIMAX 

• Modélisation des effets saisonniers 

• Flexibilité pour ajuster les 

paramètres saisonniers 

• Adaptabilité aux schémas 

saisonniers complexes 

• Amélioration de la précision avec 

SARIMAX 

• Dépendance à la qualité des données 

saisonnières 

• Difficulté avec les tendances non linéaires 

• Sensibilité aux données de mauvaise 

qualité 

• Complexité d'ajustement des paramètres 

• Limitations en cas de ruptures structurelles 
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Modèle Forces Faiblesses 

LSTM 

• Capture des relations temporelles 

complexes 

• Gestion des dépendances longues 

• Meilleure performance à long terme 

• Adaptabilité aux séries temporelles 

variées 

• Capacité d’amélioration avec des 

LSTM bidirectionnels (BLSTM) 

• Bonne performance avec des 

données de faible qualité 

• Besoin de grandes quantités de données 

• Complexité et demandes en puissance de 

calcul élevées 

• Difficulté à gérer des séries très irrégulières 

ou bruitées 

• Sensibilité aux hyperparamètres 

 

GAM 

• Adaptabilité aux situations variées 

• Précision accrue dans des scénarios 

complexes 

• Gestion des interactions complexes 

entre variables 

• Prise en compte des spécificités 

régionales 

• Personnalisation pour des conditions 

extrêmes 

• Complexité du modèle 

• Exigences en termes de données et de 

ressources 

• Risque d’overfitting 

• Dépendance à des données de qualité et à 

des connaissances spécialisées 

Lissage 

exponentiel 

• Simplicité et robustesse 

• Amélioration des prévisions avec 

des approches hybrides 

• Performance sur des données de 

qualité 

• Adaptabilité aux séries relativement 

régulières 

• Dépendance à la qualité des données 

• Coût de calcul élevé 

• Sensibilité aux ruptures structurelles 

• Limitation face aux changements 

structurels rapides 

• Adaptation insuffisante aux scénarios 

complexes 

GARCH 

• Modélisation efficace de la volatilité 

• Précision élevée dans les prévisions 

• Adaptabilité aux séries temporelles 

volatiles 

• Capacité à gérer les asymétries et les 

chocs 

• Dépendance à la qualité des données 

• Incapacité à capturer des transformations 

structurelles 

• Limites des modèles standards 

• Complexité et calculs intensifs 

• Limites face à des événements imprévus 

Modèles long 

terme et 

approche 

multisectorielle 

• Vision globale et intégrée 

• Prise en compte des divers facteurs 

économiques et industriels 

• Projections diversifiées avec 

scénarios énergétiques 

• Adaptabilité aux spécificités locales 

• Flexibilité dans l'intégration des 

énergies renouvelables 

• Dépendance aux hypothèses économiques 

et politiques 

• Sensibilité aux perturbations externes 

• Complexité des scénarios 

• Dépendance aux données historiques et à 

leur qualité 

• Limitations face aux évolutions 

technologiques rapides 

Prophet 

• Flexibilité : gestion des jours fériés, 

saisonnalités et tendances multiples. 

• Précision élevée et performances 

compétitives. 

• Robustesse face aux anomalies et 

aux changements soudains. 

• Rapidité de calcul et intégration 

facile. 

• Dépendance à la qualité des données 

(sensibilité au bruit). 

• Configuration minutieuse des paramètres 

nécessaire. 

• Complexité dans l’intégration des 

changepoints multiples. 

• Expertise avancée requise pour une 

optimisation optimale. 
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2.3.  DIFFERENTS TYPES D’HORIZONS TEMPORELS DE PREVISIONS 

Plusieurs chercheurs dans la littérature ont orienté leurs travaux de recherche à 

différents horizons de temps pour l’évaluation des modèles de prévisions.  Cette littérature 

a approuvé que dans les prévisions de charge électrique il existe trois types d’horizons 

temporels tels que l’horizon à court, moyen et long terme.  Ces horizons utilisent des durées 

spécifiques selon le domaine d’application. Ces durées des horizons [59] sont résumées dans 

le tableau 2.2 selon les domaines d’application. 

Tableau 2.2 : Classification de différents types d’horizons temporels de prévisions 

Horizon Objectif Durée Domaine d’application 

Court terme 

• Maîtriser la consommation de la 

facture d’électricité 
1min à 24h Habitat individuel 

• Planifier les risques de défaillance 

physique,  

• Assurer l’équilibre entre l’offre et 

la demande,  

• Réaliser les derniers achats et 

décisions d’effacement 

24h à 1 mois Réseau de distribution 

Moyen terme 

• Planifier les investissements pour 

le renforcement du réseau 

électrique (entretien et 

maintenance des lignes et postes 

électriques) 

1 mois à 1 

année 
Réseau de transport 

Long terme 

• Faire le bilan pluriannuel de 

l’équilibre offre/demande 

d’électricité,  

• Planifier, construire et mettre en 

service des postes électriques et 

des centrales de production 

électrique 

1 année à 

quelques 

dizaines 

d’années 

Réseau de transport 

 

2.4.  CONCLUSION PARTIELLE 

La revue de littérature a permis de cartographier et de recenser les différents et 

possibles modèles utilisés dans les multiples études qui ont traité d’un sujet similaire. Le 

prochain chapitre s’attèle à mettre en œuvre les modèles. 
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Chapitre 3.  Développement d’un modèle de prédiction de la demande  

   d’achat en électricité  

3.1.  INTRODUCTION PARTIELLE 

Ce chapitre aborde la méthodologie utilisée tout au long de la modélisation et du 

déploiement du modèle. Il présente la description et la présentation des données utilisées.  

3.2.  DONNEES 

3.2.1. Nature et collecte des données 

Les données qui ont été utilisées dans le cadre de ce travail sont celles de 

consommation en énergie électrique en République du Bénin, produites par la SBEE, sur 

une période allant du 1er janvier 2017 au 31 décembre 2023 et du 1er janvier au 31 mars 2024, 

pour un cumul de 2556 jours. Chaque jour est représenté par 24 colonnes correspondant aux 

heures de la journée, de 00h00 à 23h00. Chaque observation indique la consommation 

d'énergie en Mégawatts (MW). 

3.2.2. Transformation des données 

Pour une meilleure pertinence, la base de données a été restructurée afin d'obtenir une 

forme plus adaptée et contextualisée pour les prochaines étapes. Disposer de 24 colonnes 

représentant les heures et les valeurs de consommation d'énergie n'était pas optimal. Il a donc 

été nécessaire de réorganiser les données pour obtenir une structure plus cohérente, avec 

chaque heure associée à son jour respectif. 

Après restructuration, la fréquence des données a été définie de manière à créer des 

lignes pour chaque heure de la journée, conformément au contexte de prévision horaire. 

Cette étape a permis de mettre en évidence les valeurs manquantes sous-jacentes dans la base 

de données. 

3.2.3. Nettoyage des données 

Une première inspection a consisté à tracer l’évolution horaire de la consommation 

d’énergie électrique sur la durée du jeu de données. Cette approche a mis en évidence 

l’existence de valeurs négatives et de valeurs nulles, considérées comme aberrantes dans le 

contexte de la consommation électrique.  

Les premières analyses visuelles ont permis de constater des valeurs manquantes, des 

valeurs négatives et des valeurs nulles. Les analyses ont fait remarquer au total soixante-dix-
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sept (77) observations aberrantes dont deux (02) NaN (Not a Number en anglais) et soixante-

quinze (75) valeurs aberrantes représentant la somme des valeurs négatives et nulles. Ces 

observations aberrantes ont été considérées comme des valeurs erronées et sont donc 

supprimées de la base de données créant ainsi des valeurs manquantes. En effet, dans la 

distribution de l’énergie électrique les valeurs nulles correspondent à des coupures 

d’électricité ou l’écroulement total du réseau électrique. Il est donc nécessaire d’appliquer 

une correction pour ces valeurs aberrantes. 

Après la détection de ces observations aberrantes dans ce contexte, la méthode de 

l’écart interquartile (IQR) a servi à repérer les valeurs extrêmes. L’IQR se définit comme la 

différence entre le troisième quartile 𝑄3 et le premier quartile 𝑄1. 

Les observations inférieures à 𝑄1 − 1,5 × 𝐼𝑄𝑅 ou supérieures à 𝑄3 + 1,5 × 𝐼𝑄𝑅 ont 

été considérées comme des valeurs aberrantes. Après la détection des valeurs extrêmes, elles 

sont aussi supprimées de la base de données et des valeurs manquantes ont été également 

observées. Cette méthode a été utilisée parce qu’elle est simple à mettre en œuvre et offre 

une détection robuste des valeurs extrêmes. Après ce filtrage, un rééchantillonnage a été 

appliqué pour faire suivre les données à une fréquence horaire en utilisant la fonction 

.asfreq("H").  

La vérification des valeurs manquantes fait constater cinq cent quatre-vingt-quatre 

(584) valeurs manquantes dans les séries temporelles. Pour remplacer ces valeurs 

manquantes, la méthode de l’interpolation linéaire simple a été privilégiée. Cette méthode 

est cohérente avec le comportement progressif de la consommation électrique au fil du temps 

et assure une continuité adéquate des valeurs. 

3.2.4. Analyse exploratoire de la série 

Une première démarche a consisté à calculer la fonction d’autocorrélation pour des 

décalages allant jusqu’à 365 jours. Cette étape visait à détecter la présence d’un pic 

d’autocorrélation aux abords de 365 jours, suggérant une éventuelle saisonnalité annuelle. 

Le coefficient d’autocorrélation est donné par la formule suivante 𝜌𝑘 =
𝑐𝑜𝑣(𝑦𝑡,𝑦𝑡−𝑘) 

𝜎𝑦𝑡𝜎𝑦𝑡−𝑘 
. Avec  𝑘, 

le décalage par rapport au temps actuel.    

En parallèle, la série a été représentée sous forme de boîtes à moustaches en regroupant 

les données selon une récurrence mensuelle. Cette représentation a pour but de repérer 

visuellement d’éventuelles variations répétitives d’un mois à l’autre, renforçant l’hypothèse 

d’une organisation cyclique.  



 

MEMOIRE POUR L’OBTENTION DU DIPLOME D’INGENIEUR CAP/EPAC – REDIGE PAR JEROME SESSOU 
37 

Après cette phase d’inspection, une décomposition saisonnière a été réalisée sur 

l’ensemble des observations en utilisant la fonction seasonal_decompose(). Concrètement, 

cette étape s’est articulée autour de : 

• L’estimation de la tendance, obtenue par un lissage progressif des 

observations ; 

• La mise en évidence de la composante saisonnière, correspondant au motif 

qui se répète chaque année ; 

• L’extraction du résidu, c’est-à-dire la part de la série non expliquée par les 

deux composantes précédentes. 

Pour conforter les résultats et mieux cerner l’évolution de la consommation sur une 

année type, la décomposition a également été appliquée à un segment d’environ douze mois. 

L’objectif est d’examiner le profil détaillé de la saisonnalité intra-annuelle et de confirmer 

la régularité du motif entre les différentes années considérées. 

Enfin, les informations recueillies à l’issue de ces étapes ont été utilisées pour orienter 

les choix de modélisation.  

3.2.5. Ingénierie des données 

Au regard des différentes analyses menées, de nouvelles variables ont été créées pour 

améliorer la capacité des modèles à prendre en compte les particularités temporelles de la 

série et ainsi fournir des prévisions de meilleure qualité. Les initiatives entreprises se 

résument en trois parties : 

• Partie 1 : Création de la variable cluster_saison qui décrit la période de 

l'année (saisonnalité mensuelle) à laquelle appartient chaque observation, en fonction 

des résultats de la décomposition saisonnière. 

• Partie 2 : Création de plusieurs variables temporelles telles que 

jour_semaine (jour de la semaine), est_week_end (est un jour du week-end) et 

est_férié (est un jour férié), susceptibles d'influencer la consommation d'électricité. 

• Partie 3 : Création de la variable cluster_puissance qui indique la gamme de 

valeurs dans laquelle se situe la consommation en fonction des variables temporelles. 

Un sous-modèle de classification pourrait être utilisé pour aider le modèle principal 

à mieux faire ses prévisions. 
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3.2.5.1. Création de la variable cluster_saison 

Pour intégrer la saisonnalité mensuelle dans l’analyse, la variable cluster_saison, qui 

indique la période de l’année correspondant à chaque observation, a été définie. Cette 

variable a été créée en utilisant un modèle K-Means appliqué aux données horaires de 

l’année 2017, choisie pour représenter les cycles observés sur l’ensemble des années. 

Les variables utilisées pour cette classification sont le jour de l’année (jour_année) et 

l’heure de la journée (heure_jour), qui permettent de capter les variations saisonnières et 

journalières. 

Cette approche a permis de segmenter les observations selon des cycles récurrents de 

consommation. Enfin, les résultats ont été visualisés en associant les clusters à des tendances 

de consommation énergétique (Puissance). 

3.2.5.2. Création de nouvelles variables temporelles 

Pour analyser les variations temporelles de la consommation énergétique, les données 

ont été enrichies avec de nouvelles variables liées au calendrier. Ces variables décrivent les 

différentes dimensions temporelles, comme les mois, les semaines, ou les jours de l’année. 

La variable mois_année a d’abord été ajoutée, et elle indique le mois associé à chaque 

observation, de janvier (1) à décembre (12). Ensuite, la variable semaine_année a été créée 

pour diviser l’année en semaines numérotées de 1 à 54, permettant ainsi d’observer des 

changements hebdomadaires dans les données. 

Pour distinguer les jours, la variable jour_semaine a été créée. Elle attribue un chiffre 

à chaque jour, de 0 (lundi) à 6 (dimanche). Une autre variable, est_week_end, identifie les 

samedis et dimanches grâce à un encodage binaire, où 1 correspond à un jour de week-end. 

Enfin, les jours fériés ont également été pris en compte en définissant une liste des 

principales fêtes nationales et religieuses. Une variable binaire, est_férié, indique si une 

observation correspond à l’une de ces dates. 

3.2.5.3. Création de la variable cluster_puissance 

Les valeurs de Puissance ont été regroupées en 5 classes à l’aide d’une méthode en 

deux étapes, combinant K-Means et un modèle de classification par arbre de décision. 

L’objectif étant de structurer les données en classes distinctes et d’assurer une classification 

précise pour les observations futures. 

Le choix du nombre de clusters a été guidé par la méthode du coude (elbow curve, en 

anglais), une méthode permettant de déterminer le point optimal pour équilibrer l’inertie et 
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le nombre de groupes. Une fois les clusters définis, chaque observation des données 

d’entraînement (80 % des observations) a été assignée à un cluster. 

Ensuite, un modèle de classification basé sur un arbre de décision a été entraîné pour 

prédire les clusters en utilisant les valeurs de Puissance comme entrée. 

3.3. OUTILS ET MATERIELS 

Le présent travail a été réalisé en utilisant plusieurs ressources numériques. Ces 

ressources sont illustrées par la figure 3.1. Elles consistent en un ensemble de logiciels (VS 

Code, Streamlit), de langages de programmation (Python) et de librairies (Tensorflow, 

Numpy, Keras, Matplotlib, pandas, Seaborn, learn, Python Datetime). 

 

Figure 3.1: Liste des outils utilisés pour la construction du modèle de prédiction 

L’objectif est de disposer d’un environnement robuste et cohérent pour mener 

l’ensemble des étapes de recherche : de la collecte et du nettoyage des données au 

déploiement du modèle finalement retenu pour la prédiction. 

3.3.1. Langage de programmation Python 

L’intégralité des codes a été développée avec Python, un langage privilégié dans le 

domaine de la science des données et de l’apprentissage automatique. Ce choix s’est imposé 

grâce à la présence d’une syntaxe claire et accessible, favorisant la lisibilité et la maintenance 

du code, mais également en raison du très vaste écosystème de bibliothèques spécialisées. 

D’un point de vue pratique, Python a servi de socle pour toutes les opérations importantes 

de ce travail : la manipulation initiale des données, l’exploration préliminaire des séries 

temporelles, la mise en œuvre des différents modèles identifiés après la revue de littérature.  
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3.3.2. Environnement de développement  

Afin de structurer et d’organiser le travail, Visual Studio Code a été choisi comme 

environnement de développement principal. Cet éditeur, développé par Microsoft, se 

distingue par ses performances, son interface ergonomique et sa modularité. Dans le cadre 

de ce projet, l’installation d’extensions dédiées à Python a permis d’optimiser à la fois la 

saisie (grâce à la complétion automatique et l’analyse statique du code) et la phase de 

débogage (via le débogueur intégré).  

De plus, l’intégration native de Git a facilité le suivi des modifications et la gestion 

des versions du code, assurant ainsi la traçabilité des évolutions. L’usage de Visual Studio 

(VS Code) a de surcroît rendu possible un paramétrage rapide de l’environnement virtuel 

Python, ce qui a permis de gérer finement les dépendances et de maintenir la cohérence entre 

les différentes librairies installées. 

3.3.3. Bibliothèques Python utilisées 

Le recours à Python pour l’analyse et la modélisation de données se concrétise surtout 

par l’exploitation d’un ensemble de bibliothèques spécialisées. En premier lieu, NumPy a 

constitué l’outil principal utilisé pour les opérations numériques sur la base de données. Son 

principal intérêt repose sur sa capacité à manipuler efficacement des tableaux 

multidimensionnels, ce qui s’avère indispensable lorsque l’on travaille avec de grandes 

quantités de mesures horaires ou journalières.  

L’organisation et la transformation des données ont été réalisées avec pandas. Cette 

bibliothèque offre une structure de données de haut niveau, appelée DataFrame, adaptée au 

regroupement et à la mise en forme des informations. Dans le cadre de cette étude, pandas a 

été mobilisé pour assurer différentes tâches essentielles : lecture des fichiers contenant les 

données, gestion des valeurs manquantes, et manipulation de formats temporels spécifiques. 

Ainsi, la variable Puissance a pu être rééchantillonnée aisément, par exemple pour passer de 

pas horaire à un pas quotidien, ou pour générer des indicateurs statistiques sur des intervalles 

temporels personnalisés. 

Pour la partie dédiée à l’analyse des séries temporelles et à la modélisation, statsmodels 

a joué un rôle clé. Son module d’analyse des séries temporelles inclut en effet des méthodes 

de lissage exponentiel, des modèles ARIMA, ainsi que des outils de diagnostic tels que la 

fonction d’autocorrélation. Dans ce travail, statsmodels a permis de vérifier la présence 

d’une saisonnalité annuelle, de tester différents ordres de modèles et d’évaluer la qualité des 
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ajustements à travers des statistiques d’erreur et des graphiques de résidus. Les 

fonctionnalités de visualisation de la saisonnalité ou de la tendance ont par ailleurs facilité 

l’interprétation des phénomènes observés dans la consommation électrique. 

En ce qui concerne les visualisations et les représentations graphiques, cette étude s’est 

servie de Matplotlib et de seaborn. Les graphiques générés ont permis de retracer l’évolution 

de la consommation sur des périodes longues, tandis que les boîtes à moustaches ont mis en 

évidence la distribution et l’amplitude de la consommation selon diverses périodes de 

l’année.  

En complément, Streamlit, en raison de sa simplicité, a été utilisée pour concevoir 

l’interface dont se servira l’utilisateur du modèle développé pour prédire la future demande 

d’achat électrique.  

Par ailleurs, TensorFlow et keras ont été envisagées pour l’exploration de modèles de 

type deep learning, notamment du CNN et LSTM adaptés à la prévision de séries 

temporelles. Même si l’approche basée sur SARIMA ou des modèles de lissage peut se 

montrer satisfaisante dans bien des contextes, TensorFlow offre la souplesse nécessaire 

lorsque le phénomène à modéliser présente des non-linéarités plus prononcées ou des 

interactions complexes.  

Enfin, la bibliothèque scikit-learn a servi à plusieurs étapes de l’apprentissage 

automatique, même si son utilisation demeure principalement complémentaire des 

approches précédentes. En particulier, la fonctionnalité train_test_split a simplifié la scission 

des données en ensembles d’apprentissage et de test, et diverses méthodes de mise à l’échelle 

ont été testées pour uniformiser les distributions de variables d’entrées avant d’alimenter un 

modèle de régression. À travers ses nombreuses fonctions d’évaluation, scikit-learn a aussi 

permis de comparer la performance des modèles. 

3.4.  MODELISATION ET CHOIX D’UN MODELE DE PREVISION DE LA 

DEMANDE EN ENERGIE ELECTRIQUE 

La modélisation constitue une étape clé pour atteindre l'objectif de prévision de la 

demande en électricité. Elle repose sur des approches méthodiques visant à traduire les 

dynamiques observées dans les données en modèles capables de produire des prévisions 

fiables. Cette section détaille les modèles retenus, les étapes de leur mise en œuvre, ainsi que 

les critères utilisés pour évaluer et comparer leurs performances. Le tableau 3.1 présente les 

différents modèles qui sont mis en œuvre dans le cadre de ce travail de recherche. 
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Tableau 3.1 : Cartographie des modèles de prévision d’énergie électrique retenus 

N° Modèle 

1 ARIMA-LSTM 

2 GAM 

3 GARCH 

4 ARIMA 

5 Lissage Exponentiel 

6 Prophet 

7 CNN 

8 CNN-LSTM 

9 GRU 

10 CNN-GRU 

11 LSTM 

 

3.4.1. Mise en œuvre des modèles retenus 

 Cette section présente la méthodologie utilisée pour chaque modèle mis en œuvre 

dans le cadre de ce travail.  

3.4.1.1. Modèle ARIMA 

 Le modèle ARIMA a été implémenté comme une approche naïve pour la prévision 

de la consommation énergétique. Le choix des paramètres (1, 1, 1) reflète une structure 

minimale, avec une composante autorégressive d’ordre 1 (AR), une différenciation pour 

assurer la stationnarité (I), et un terme de moyenne mobile d’ordre 1 (MA). 

 Les données ont été divisées en deux : un ensemble pour l’entraînement (01 janvier 

2017 au 31 décembre 2022) et un ensemble pour le test (à partir du 1er janvier 2023 au 31 

décembre 2023). Une fois entraîné, il a été utilisé pour générer des prévisions sur la période 

de test. Le modèle a été évalué avec la MAE, le RMSE, le MAPE et le R². Ces métriques 

MAE, RMSE, MAPE et R² ont été largement utilisées dans la littérature passée pour 

l’évaluation des modèles. 

3.4.1.2. Modèle Additif Généralisé (GAM) 

Contrairement aux modèles paramétriques classiques, les GAMs permettent de 

modéliser des relations non linéaires grâce à des fonctions lissées, ce qui en fait une option 

pertinente pour capturer des variations temporelles complexes. 
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Dans cette implémentation, une variable explicative, indice temporel (time_index, 

colonne index contenant la date et l’haure), a été générée pour servir d’entrée unique au 

modèle. Le GAM, composé d’un seul terme lissé sur cette variable, a été entraîné sur les 

données couvrant la période du 01 janvier 2017 au 31 décembre 2022. Les prévisions ont 

ensuite été générées pour l’ensemble de test, correspondant aux observations du 01 janvier 

2023 au 31 décembre 2023. 

3.4.1.3. Lissage exponentiel 

Le lissage exponentiel implémenté dans le contexte de ce travail s’appuie sur deux 

hypothèses : une tendance additive pour suivre l'évolution générale de la consommation 

électrique et une saisonnalité additive qui permet de capturer les fluctuations journalières 

récurrentes, définies sur un cycle de 24 heures. 

Le modèle a été entraîné sur les données couvrant la période du 01 janvier 2017 au 31 

décembre 2022, avant de générer des prévisions pour l'ensemble de test correspondant à 

l'année 2023.  

3.4.1.4. Modèle LSTM 

Face à la complexité croissante des dynamiques temporelles présentes dans les 

données, l’utilisation d’un modèle basé sur des réseaux de neurones récurrents, comme le 

LSTM, s’est imposée comme une alternative pertinente. Les LSTM, conçus pour capturer 

les dépendances à long terme dans des séries chronologiques, offrent une flexibilité 

exceptionnelle pour modéliser les relations temporelles non linéaires et les fluctuations 

complexes. 

La première étape de cette implémentation a consisté à normaliser les données en les 

transformant dans une plage [0,1] à l’aide du MinMaxScaler de la librairie scikit-learn de 

bibliothèque Python. Cette normalisation est essentielle pour améliorer la convergence du 

modèle et optimiser son entraînement. 

Une fenêtre glissante de 24 observations a été utilisée pour créer les ensembles 

d’entrée et de sortie, représentant ainsi un cycle journalier complet. Les données ont ensuite 

été divisées en deux ensembles : 80 % pour l’entraînement et 20 % pour le test. 

Le modèle LSTM a été construit avec une couche récurrente comprenant 150 unités et 

une activation ReLU, suivie d’une couche dense à une sortie pour prédire la consommation 

énergétique. Le modèle a été entraîné sur 150 époques avec un batch size de 32, utilisant 
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l’algorithme d’optimisation Adam et une fonction de perte basée sur l’erreur absolue 

moyenne. La figure 3.2 illustre la constitution du modèle LSTM implémenté. 

       

Figure 3.2 : Constitution du modèle LSTM implémenté 

 

3.4.1.5. Modèle GARCH 

Dans cette approche, les données ont été segmentées en ensemble d’entraînement (80 

%) et de test (20 %). Le modèle a été importé grâce à la librairie arch et paramétré avec deux 

termes autorégressifs (p=2) et trois termes de moyenne mobile (q=3), visant à expliquer les 

variations récurrentes dans la volatilité. L’ajustement, réalisé par maximisation de la 

vraisemblance, a permis d’estimer les coefficients du modèle, chaque itération affinant 

progressivement la représentation de la dynamique sous-jacente. 

3.4.1.6. Modèle CNN 

Pour préparer les données, une normalisation a été appliquée pour les ramener sur une 

échelle de 0 à 1, suivie d’une segmentation en séquences glissantes de 24 heures. Chaque 

séquence, associée à une cible représentant la consommation énergétique suivante, a été 

remodelée pour s’adapter aux entrées requises par le modèle, sous la forme [échantillons, 

longueur de séquence, 1]. Cette structure permet au modèle de traiter efficacement les 

données temporelles tout en identifiant les motifs pertinents. 

Le modèle CNN développé comprend une couche de convolution avec 64 filtres et une 

taille de noyau de 3, utilisant une activation ReLU pour détecter les motifs locaux dans les 

séquences temporelles. Cette couche est suivie d’une opération de MaxPooling avec 

pool_size 2 pour réduire la dimensionnalité et conserver les informations essentielles. Les 

sorties convolutives sont ensuite aplaties avant d’être traitées par une couche dense de 50 

unités, permettant de capturer des interactions complexes. Enfin, une couche de sortie dense 

génère les prédictions de consommation énergétique. L’ensemble du modèle comprend 35 

557 paramètres entraînables, optimisés avec l’algorithme Adam et une fonction de perte 

basée sur l’erreur quadratique moyenne. 

Les performances du modèle ont été évaluées après un entraînement sur 50 époques et 

de batch_size 32, avec une division des données en 80 % pour l’entraînement et 20 % pour 

le test. La figure 3.3 présente la constitution du modèle CNN implémenté. 
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Figure 3.3 : Constitution du modèle CNN implémenté 

 

3.4.1.7. Modèle CNN-LSTM 

Le modèle CNN-LSTM représente une approche hybride innovante pour la prévision 

de séries temporelles, combinant les atouts des réseaux convolutionnels et du LSTM. Cette 

architecture permet d'exploiter simultanément les motifs locaux présents dans les données 

tout en capturant les dépendances séquentielles sur des périodes étendues, rendant ce modèle 

particulièrement adapté aux séries complexes comme celles de la consommation 

énergétique. 

La préparation des données s'est faite par une normalisation couplée à une 

transformation en séquences glissantes de 24 heures. Chaque séquence encapsule les 

variations journalières et est associée à une cible représentant la consommation énergétique 

prévue. Ces séquences, restructurées pour s'adapter aux exigences des couches CNN et 

LSTM, ont ensuite été divisées en ensembles d'entraînement (80 %) et de test (20 %). Cette 

structuration garantit une séparation rigoureuse des données pour l'évaluation. 

Le modèle utilise d'abord une couche Conv1D avec 64 filtres et une taille de noyau de 

3 pour extraire les motifs locaux à partir des séquences d'entrée. Une opération de 

MaxPooling1D suit, condensant les informations pertinentes tout en réduisant la 

dimensionnalité. Les sorties convolutives sont ensuite acheminées vers une couche LSTM, 

dotée de 50 unités. Cette couche permet de capturer des dépendances temporelles sur des 

échelles variées, combinant ainsi la compréhension locale et globale des données. Enfin, une 

couche dense unique produit la prévision de consommation énergétique. La figure 3.4 illustre 

la constitution du modèle hybride CNN-LSTM implémenté. 

 

Figure 3.4 : Constitution du modèle CNN-LSTM hybride implémenté 

 

3.4.1.8. Modèle ARIMA-LSTM 

Le modèle hybride ARIMA-LSTM a été conçu pour exploiter les forces combinées de 

l’ARIMA, destiné à modéliser les relations linéaires et les tendances globales dans les séries 
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temporelles, et de LSTM, qui excelle dans l’identification des relations non linéaires et des 

dépendances à long terme. Cette combinaison vise à pallier les faiblesses inhérentes à chaque 

modèle lorsqu’ils sont appliqués indépendamment. 

La première étape de l’approche consiste à ajuster un modèle ARIMA sur les données 

normalisées de consommation énergétique, afin de capter les tendances globales et les 

structures linéaires. Les prédictions générées par ARIMA sont ensuite comparées aux valeurs 

réelles pour calculer les résidus. Ces résidus, représentant des informations non expliquées 

par l’ARIMA, sont une composante critique puisqu’ils contiennent les schémas non linéaires 

complexes qui échappent à une modélisation linéaire classique. 

Les résidus, après transformation en séquences temporelles sur une fenêtre glissante 

de 24 heures, sont utilisés comme données d'entrée pour un modèle LSTM. L’architecture 

LSTM est construite autour de deux couches successives, chacune composée de 20 unités, 

suivies d’une couche dense pour produire les prédictions finales. L’idée sous-jacente est que 

l’ARIMA capture la structure globale, tandis que le LSTM affine les prédictions en tenant 

compte des dynamiques non linéaires contenues dans les résidus. 

3.4.1.9. Modèle Prophet 

Pour préparer les données, l’index temporel a été transformé en une colonne date et 

heure nommée ds, et la variable cible Puissance a été renommée y, conformément aux 

exigences du modèle Prophet. Plusieurs variables explicatives ont été créées : le mois de 

l’année, le jour de la semaine, une indication binaire pour différencier les week-ends des 

jours ouvrables, ainsi qu’une colonne identifiant les jours fériés du Bénin, comme la Pâques, 

la fête des religions endogènes et de l’indépendance. La liste des jours fériés a été générée 

pour la période d’étude (2017-2023) en combinant des dates fixes et des calculs dynamiques 

pour des événements mobiles comme Pâques.   

Ces variables ont ensuite été intégrées comme régressions dans le modèle Prophet, en 

complément de sa capacité native à identifier des tendances et des cycles temporels. Une 

saisonnalité mensuelle a été ajoutée au modèle à l’aide de la fonction add_seasonality, avec 

une période de 30,5 jours et un ordre de Fourier fixé à 5. Cette personnalisation visait à 

améliorer la capacité du modèle à comprendre les variations cycliques propres aux données. 

Le modèle a ensuite été entraîné sur l’ensemble des données couvrant la période de 

2017 à 2022 et testé sur la période de 2023 pour les prévisions. Les résultats ont été obtenus 

en fusionnant les prévisions (yhat) avec les valeurs historiques. 
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3.4.1.10. Modèle GRU 

Les modèles GRU ont été conçus sur la base des réseaux de neurones. Ils sont conçus 

comme les modèles LSTM et sont capables de capturer les dépendances à long terme dans 

les séries temporelles. Compte tenu de la complexité des données il est important de mettre 

en évidence les modèles GRU.  

L’implantation du modèle GRU nécessite une normalisation des données en utilisant 

le MinMaxScaler pour les ramener sur une échelle de 0 à 1. Ceci permet d’améliorer sa 

convergence et d’optimiser son entraînement. 

Une fenêtre glissante de 24 observations a été utilisée pour créer les ensembles 

d’entrée et de sortie, représentant ainsi un cycle journalier complet. Les données ont ensuite 

été divisées en deux ensembles : 80 % pour l’entraînement et 20 % pour le test. 

Le modèle GRU a été construit avec une couche récurrente comprenant 100 unités et 

une activation ReLU. Cette couche a la fonction Dropout pour éviter le surapprentissage, 

suivie ensuite d’une couche dense à une sortie pour prédire la consommation énergétique. 

Le modèle a été entraîné sur 50 époques avec un batch size de 32, utilisant l’algorithme 

d’optimisation Adam. La figure 3.5 présente la constitution du modèle GRU implémenté. 

 

Figure 3.5 : Constitution du modèle GRU implémenté 

3.4.1.11. Modèle CNN-GRU 

Le modèle CNN-GRU représente une approche hybride avancée pour la prévision de 

séries temporelles. Il combine les atouts des réseaux convolutionnels et du GRU. C’est une 

architecture permettant d'exploiter simultanément les motifs locaux présents dans les 

données tout en capturant les dépendances séquentielles sur des périodes étendues. Il rend 

ce modèle particulièrement adapté aux séries complexes comme celles de la consommation 

électrique. 

La préparation des données s'est faite par une normalisation couplée à une 

transformation en séquences glissantes de 24 heures. Chaque séquence encapsule les 

variations journalières et est associée à une cible représentant la consommation énergétique 

prévue. Ces séquences, restructurées pour s'adapter aux exigences des couches CNN et GRU, 

ont ensuite été divisées en ensembles d'entraînement (80 %) et de test (20 %). Cette 

structuration garantit une séparation rigoureuse des données pour l'évaluation. 
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Le modèle utilise d'abord une couche Conv1D avec 64 filtres et une taille de noyau de 2 pour 

extraire les motifs locaux à partir des séquences d'entrée. Une opération de MaxPooling1D 

suit, condensant les informations pertinentes tout en réduisant la dimensionnalité. Les sorties 

convolutives sont ensuite acheminées vers une couche GRU, dotée de 100 unités. Cette 

couche permet de capturer des dépendances temporelles sur des échelles variées, combinant 

ainsi la compréhension locale et globale des données. Une opération de Dropout () est ensuite 

appliquée pour la réduction de surapprentissage. Une couche dense unique fait la prédiction 

de consommation électrique. La figure 3.6 décrit la constitution du modèle CNN-GRU 

hybride implémenté 

 

Figure 3.6 : Constitution du modèle CNN-GRU hybride implémenté 

 

3.4.2. Sélection d’un modèle pour la prévision 

La sélection du modèle le plus approprié pour la prévision de la consommation 

énergétique représente une étape cruciale de ce travail. Il ne s’agit pas uniquement de choisir 

un modèle basé sur des métriques de performance. Mais la décision repose également sur 

des critères pratiques, tels que la simplicité d’utilisation et la capacité du modèle à être 

intégré efficacement dans les systèmes opérationnels de la SBEE. En effet, un modèle 

performant mais difficile à comprendre, maintenir ou déployer risque de ne pas répondre aux 

besoins réels de l’organisation. 

3.4.3.  Les métriques d’évaluation des modèles  

Parmi les métriques les plus utilisées pour évaluer les modèles de prévision dans le 

domaine de l’énergie électrique figurent des indicateurs de performance comme l'Erreur 

Quadratique Moyenne (MSE en anglais), la Racine Carrée de l'Erreur Quadratique Moyenne 

(RMSE en anglais), l’Erreur Absolue Moyenne (MAE en anglais), le Coefficient de 

Détermination (R²) et l'Erreur Absolue Moyenne en Pourcentage (en anglais MAPE). 

3.4.4.  Erreur Quadratique Moyenne (MSE, Mean Squared Erreur en anglais) 

Le MSE mesure la moyenne des carrés des écarts entre les valeurs observées 𝑦𝑖 et les 

valeurs prédites ŷ𝑖. Il met l'accent sur les grandes erreurs, car les écarts sont élevés au carré. 

Cela en fait une métrique sensible aux valeurs aberrantes. L’objectif principal du MSE est 
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de minimiser l’impact global des erreurs en attribuant un poids plus élevé aux écarts 

importants. 

Utilisé pour évaluer la précision globale des modèles, le MSE est particulièrement 

adaptée lorsqu'il est crucial de pénaliser fortement les grandes erreurs, par exemple, dans la 

gestion des ressources énergétiques, où de grandes erreurs pourraient entraîner des décisions 

coûteuses. 

 Le MSE est donné par la formule  𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − ŷ𝑖)2𝑛

𝑖=1            (1) 

3.4.5.  Erreur Absolue Moyenne EAM (MAE, Mean Absolute Error en anglais) 

Le MAE est une métrique fondamentale utilisée pour évaluer la performance des 

modèles prédictifs. Il quantifie la moyenne des écarts absolus entre les valeurs observées 𝑦𝑖 

et les valeurs prédites ŷ𝑖, offrant une mesure directe et interprétable de l'erreur moyenne en 

unités des données d'origine.  

Contrairement au MSE, le MAE ne pénalise pas de manière disproportionnée les 

grandes erreurs, attribuant à chaque écart un poids identique. Cette propriété confère au 

MAE une utilité particulière dans les contextes où l'objectif principal est d'obtenir une 

évaluation globale des écarts sans biais introduite par les valeurs aberrantes. Il est 

couramment employé dans des domaines tels que les prévisions énergétiques, où une 

interprétation intuitive de l'erreur moyenne est essentielle pour guider les décisions. 

Bien que le MAE soit moins sensible aux écarts extrêmes, cette caractéristique peut 

s’avérer limitative dans des situations où les grandes erreurs représentent des risques 

critiques. Néanmoins, sa simplicité de calcul et sa capacité à fournir une évaluation uniforme 

des erreurs en font un outil précieux pour comparer la performance des modèles prédictifs. 

Le MAE est donné par la formule 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛
𝑖=1                (2) 

3.4.6.  Racine de l’Erreur Quadratique Moyenne (RMSE, Root Mean Squared Error, 

en anglais) 

Le RMSE est la racine carrée de la MSE, exprimant ainsi l'erreur moyenne dans la 

même unité que les données observées. Cette caractéristique rend le RMSE particulièrement 

intuitif et facile à interpréter. Contrairement au MSE, il réduit légèrement l’impact des 

grandes erreurs tout en conservant leur poids relatif. 

Le RMSE est très utile pour comparer différents modèles ou scénarios en termes 

d’erreur absolue moyenne. Il est fréquemment utilisé dans des contextes où les unités des 
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données sont cruciales pour interpréter les erreurs, comme la consommation énergétique 

exprimée en kilowattheures. 

Le RMSE est donné par la formule 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖 − ŷ𝑖)2𝑛

𝑖=1                    (3) 

3.4.7.  Coefficient de détermination (R²) 

Le coefficient de détermination R² mesure la proportion de la variance des valeurs 

observées expliquées par le modèle. Une valeur de R² proche de 1 indique que le modèle 

capture efficacement la variabilité des données, tandis qu’une valeur proche de 0 signifie 

qu’il est moins performant. 

Le R² est couramment utilisé pour évaluer la qualité d'ajustement des modèles de 

régression. Il aide à quantifier dans quelle mesure les fluctuations des données sont 

expliquées par les variables du modèle. 

Le R² est donné par la formule 𝑅2 = 1 −
∑ (𝑦𝑖−𝑦𝑖̂)𝑛

𝑖=1
2

∑ (𝑦𝑖−𝑦)𝑛
𝑖=1

2              (4) 

3.4.8.  Erreur Absolue Moyenne en Pourcentage EAMP (MAPE, Mean Absolute 

Percentage Error en anglais) 

Le MAPE calcule la moyenne des erreurs absolues exprimées en pourcentage des 

valeurs observées. Cette mesure permet de comparer facilement les performances des 

modèles sur différents ensembles de données ou échelles. 

Le MAPE est particulièrement adapté aux contextes où les erreurs relatives sont plus 

pertinentes que les erreurs absolues, comme dans la planification énergétique, où les 

pourcentages d'erreur relatifs à la consommation totale sont critiques. Il est généralement 

utilisé pour évaluer les modèles sélectionnés pour la prédiction dans le domaine de 

distribution et du transport de l’énergie électrique et prime sur l’utilisation de la métrique 

MAE [41]. Malgré cela cette métrique comporte des inconvénients qui empêchent son 

utilisation lorsque des observations proches de 0 se trouvent dans la base de données [30]. 

Le MAPE est donné par la formule 𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑦𝑖−𝑦𝑖̂

𝑦𝑖
|𝑛

𝑖=1             (5)     
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3.4.9.  Synthèse des métriques de performance d’évaluation des modèles utilisés dans 

la régression 

Dans les revues utilisées, plusieurs auteurs ont présenté des métriques de performance 

d’évaluation les plus adaptées dans le contexte de la prévision de l’énergie électrique. Le 

tableau 3.2 présente les métriques de performance d’évaluation et leurs marges [41]. 

Tableau 3.2 : Indicateurs de performance d'évaluation des modèles en régression 

Métriques de performance d’évaluation Marges d’erreur 

Erreur relative MAPE (%) 1 à 3 

Erreur absolue 

MSE 

Plus faible possible MAE 

RMSE 

Coefficient de détermination R² Entre 0,95 et 1 

Les indicateurs tels que le MAE, le RMSE, le MAPE, le MSE et le coefficient de 

détermination R² mentionnés dans le tableau 3.2 sont couramment utilisés comme critères 

d’évaluation des modèles de régression dans la littérature. Ce tableau précise les conditions 

dans lesquelles ces indicateurs sont jugés satisfaisants. L’utilisation des onze (11) modèles 

implémentés (ARIMA, GAM, Lissage Exponentiel, Facebook Prophet, GARCH, LSTM, 

CNN, GRU, ARIMA-LSTM, CNN-LSTM et CNN-GRU) a fourni les indicateurs comme 

MAE, RMSE, MAPE et R² pour les données de test. Toutefois, cette étude a retenu 

principalement le MAE et le MAPE comme critères de comparaison. Les modèles 

sélectionnés pour la validation finale sont ceux présentant une MAE faible que possible et 

une MAPE compris entre 1 et 3 %. 

3.5.  DESCRIPTION DE LA PLATEFORME DEVELOPPEE POUR LE 

DEPLOIEMENT 

Cette section décrit la plateforme et son utilisation pour la prédiction de la demande 

d’achat à la SBEE. 

3.5.1.  Entrée de la plateforme 

La plateforme reçoit un modèle pré-entraîné qui s’appuie sur les 24 heures de données 

traitées pour prédire les 24 heures prochaines de la puissance électrique. Le modèle est 

construit avec un MinMaxScaler de 24 valeurs. Cette plateforme prend également une base 

de données « csv » disposant une colonne « Date » au format %d/%m/%Y %H : %M et une 

colonne « Puissance (MW) » au pas horaire. Via l’interface homme-machine, l’utilisateur 

sélectionne la date de début de prédiction avec un horizon parmi les trois horizons de temps 
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(24 heures, 48 heures, 72 heures). Il exécute la prédiction avec le bouton nommé « Exécuter 

la prédiction ».  

3.5.2.  Sortie de la plateforme 

Ici la plateforme génère sous forme de base de données des prévisions horaires de la 

puissance électrique téléchargeable. Un graphique des prévisions réalisé avec la librairie 

plotly s’affiche.  

3.6.  CONCLUSION PARTIELLE 

Ce chapitre a permis de présenter les bibliothèques de python, de décrire la 

méthodologie utilisée ainsi que la plateforme développée pour le déploiement. Le chapitre 4 

annonce les résultats obtenus à l’issue des traitements de données et de l’application des 

modèles en vue de la prédiction à court terme de la demande d’achat de l’énergie à la SBEE. 
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Chapitre 4. Résultats et discussions 

4.1.  INTRODUCTION GENERALE 

Ce chapitre présente l’ensemble des résultats obtenus aussi bien au niveau du 

traitement des données que de la partie modélisation. Les résultats ont également fait l’objet 

de discussions.  

4.2.  NETTOYAGE DES DONNEES 

Les graphiques de la figure 4.1 et de la figure 4.2 illustrent l'évolution de la 

consommation horaire sur l'ensemble de données utilisées (données de l’entraînement, de 

test et les données de prévisions sur des horizons temporels).  

 

Figure 4.1: Evolution de la consommation en énergie électrique du 1er janvier 2017 au 31 décembre 

  2023 

 

Figure 4.2 : Evolution de la consommation en énergie électrique du 1er janvier au 31 mars 2024 

Le jeu de données présente des valeurs aberrantes, comme l'indiquent les premières 

analyses visuelles. Il existe des valeurs égales à 0, ainsi que des valeurs négatives, ce qui, en 

soit, pose un problème dans le contexte de ce travail. 

En effet, il s'agit de la consommation d'énergie électrique par la population. Par 

conséquent, les valeurs de la variable puissance ne peuvent descendre en dessous de 0. Les 

valeurs égales à 0 quant à elles, peuvent indiquer des périodes de coupure d'électricité. La 
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technique de l’intervalle interquartile a été utilisée pour repérer d’autres valeurs aberrantes. 

Ces valeurs sont représentées avec la figure 4.3 et la figure 4.4.  

 

Figure 4.3: Consommation d'énergie avec des anomalies 

 

Figure 4.4 : Consommation d'énergie avec des anomalies du 1er janvier au 31 mars 2024 

Dans l'un ou l'autre des cas, ces valeurs aberrantes sont susceptibles de fausser les 

analyses ultérieures et doivent être corrigées. Elles ont d’abord été remplacées par des 

valeurs manquantes. 

Le remplacement des valeurs aberrantes dans le jeu de données a entraîné la création 

de valeurs manquantes qu'il convient maintenant de corriger. Puisqu’il s’agit d’une 

problématique de séries temporelles et au vu des caractéristiques du jeu de données, 

l'interpolation linéaire simple apparaît comme la méthode la plus appropriée. La figure 4.5 

et la figure 4.6 présentent les données avec les valeurs imputées.   
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Figure 4.5: Consommation d'énergie avec les données manquantes remplacées 

 

Figure 4.6 : Consommation électrique avec les données manquantes interpolées du 1er janvier au 31 mars 

2024 

4.3.  ANALYSE EXPLORATOIRE DES DONNEES 

L'analyse de la fonction d'autocorrélation sur une période de 365 jours des données du 

1er janvier 2017 au 31 décembre 2023 a révélé visuellement une tendance annuelle 

parfaitement distincte. Cette observation indique une saisonnalité claire au cours de l'année, 

avec un motif récurrent qui se manifeste une fois par an, formant un cycle sinusoïdal. La 

figure 4.7 présente l’autocorrélogramme de cette série. Les ordonnées représentent la 

corrélation de la série au temps actuel et la même série à un temps t dans le passé. Par 

exemple, pour un retard de 1, il montre une corrélation entre le temps actuel et le temps – 1 

de 0,80. Cela indique une forte corrélation. Cette forte corrélation explique une forte 

dépendance temporelle dans les données. Dans le temps, la consommation électrique 

présente une évolution de façon cohérente. Elle a un caractère saisonnier et oriente vers 

l’utilisation des modèles plus complexe. 
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Figure 4.7: Autocorrélogramme 

La figure 4.8 met en lumière l’évolution de la puissance consommée par mois tout au 

long d’une année. Cette puissance consommée par année suit l’allure d’une fonction 

sinusoïdale dans la série temporelle. La consommation électrique dans l’année connait une 

baisse dans le mois de janvier. Elle augmente en février et mars, rechute à partir du mois de 

mai jusqu’en septembre puis reprend de façon ascendante dans le mois d’octobre jusqu’au 

mois de décembre. On remarque ainsi une saisonnalité claire dans les données au cours d'une 

année. 

 

Figure 4.8: Boîte à moustache représentant la série 

Une décomposition saisonnière a permis de rendre la saisonnalité plus perceptible. La 

figure 4.9 indique de la saisonnalité dans les données. 
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Figure 4.9: Décomposition de la saisonnalité de la série sur la période 2017 - 2023 

En analysant la figure 4.9, on remarque une saisonnalité annuelle parfaitement 

identifiable, ainsi qu'une tendance haussière au fil des années. 

La population béninoise tend à consommer l'électricité de manière similaire à des 

moments précis dans l'année, de façon répétitive, avec des besoins croissants au fil des 

années, probablement en raison de la croissance démographique ou de l'utilisation accrue 

d'appareils électroniques. 

Cela suggère qu'une première piste de modélisation pourrait être l'utilisation de 

modèles de séries temporelles plus complexes, excluant ainsi les modèles linéaires tels que 

l'ARIMA au profit de modèles plus complexe tels que SARIMA ou les réseaux de neurones. 

Les variations ont été examinées à une échelle plus petite, une année, afin d'obtenir 

une meilleure compréhension des motifs récurrents au sein de la saisonnalité annuelle 

identifiée précédemment. La figure 4.10 illustre la saisonnalité sur une année. 

 

Figure 4.10: Décomposition de la saisonnalité sur une année (2017) 
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On remarque en effet la présence d'un schéma saisonnier au sein de chaque année, 

avec, en suivant la courbe de tendance sur les figures 4.9 et 4.10, puis l’allure de la fonction 

autocorrélation et la boîte à moustache sur les figures 4.7 et 4.8. Ces variations, associées à 

une augmentation globale, suggèrent l’utilisation des modèles comme ARIMA, LSTM, 

CNN et GRU pour capturer à la fois la saisonnalité et la tendance. 

4.4.  INGENIERIE DES DONNEES 

Le degré d’inertie a permis de tracer le nombre de groupes (clusters) afin de classifier 

de profils de consommation avec les données du 1er janvier au 31 décembre 2023. Ceci 

permet d’identifier le comportement de consommation électrique sur le réseau électrique. 

C’est le graphique de la figure 4.11 qui a été utilisé pour appliquer la méthode du coude (ou 

elbow method en anglais) afin de déterminer le nombre idéal de groupes (clusters).  

 

 

Figure 4.11 : Niveau d’inertie selon le nombre de groupes (clusters en anglais) 

Cinq groupes (clusters, en anglais) ont été définis grâce au modèle K-Means. Ensuite, 

un modèle de classification basé sur un arbre de décision a été entraîné pour prédire les 

groupes (clusters) en utilisant les valeurs de puissance comme entrée. Lors de l’évaluation 

sur les données de test, le modèle a obtenu un score de précision égale à 1.0, indiquant qu’il 

a parfaitement prédit les groupes (clusters) des observations de test. 

Ce résultat montre que la segmentation des données par K-Means était bien définie et 

que le modèle de classification a appris efficacement à distinguer les gammes de valeurs de 

puissance. Un tel score reflète l’absence d’ambiguïté dans les classes et confirme que le 

modèle peut être utilisé pour attribuer des groupes) clusters aux valeurs de puissance dans 

l’ensemble du jeu de données. 
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Deux visualisations ont été utilisées pour analyser la répartition des valeurs de 

puissance selon les groupes (clusters) définis. La figures 4.12  et la figure 4.13 présentent 

les cinq (05) profils de consommation  

 

Figure 4.12 : Visualisation sur 7 ans des groupes (clusters) de la variable Puissance par groupe (cluster) créé 

 

Figure 4.13 : Visualisation sur l’année 2017 des groupes (clusters) de la variable puissance par groupe  

  (cluster) créé 

Ces deux (02) graphiques montrent la répartition des valeurs de puissance en fonction 

du temps, classées en cinq (05) clusters distincts (0 à 4). La classe rouge regroupe les valeurs 

les plus basses, correspondant à des périodes de faible activité énergétique. Ces moments de 

consommation minimale sont réguliers tout au long des années et pourraient représenter des 

phases de faible activité économique. 

Les plages verte et bleue représentent des niveaux de consommation intermédiaires. 

Ces plages sont dominantes sur l’ensemble de la période des 7 ans et traduisent une 

consommation stable et régulière, associée aux usages énergétiques standards. Leur 

répartition uniforme dans le temps suggère une régularité dans les cycles de demande 

énergétique. 
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La plage orange regroupe des valeurs plus élevées, marquant des périodes de forte 

consommation. À partir de 2021, cette plage devient plus visible, indiquant une montée en 

puissance des besoins énergétiques. 

Enfin, la plage violette représente les valeurs maximales. Ces pics de consommation 

restent rares avant 2022, mais deviennent plus fréquents par la suite, signalant un 

changement structurel important. Il s’agit d’une possible conséquence des politiques 

publiques mises en œuvre ces dernières années. La figure 4.14 présente la distribution de 

puissance par groupe(cluster). 

 

Figure 4.14 : Histogramme de la variable puissance catégorisée par groupe (cluster) 

Cet histogramme empilé montre la répartition des valeurs de puissance, segmentées en 

plusieurs plages de couleurs correspondant aux clusters. La forme globale de la distribution 

suggère une distribution normale, où les valeurs se concentrent autour d’une moyenne, avec 

une symétrie 

• Rouge (75 à ~125) : Cette plage correspond aux valeurs faibles. La faible 

fréquence observée aux extrémités inférieures de la distribution est caractéristique de 

la queue gauche d’une distribution normale. 

• Vert et Bleu (125 à ~175) : Ces plages représentent le centre de la distribution, 

où les valeurs de Puissance sont les plus fréquentes. Cela indique que ces niveaux 

correspondent à des périodes typiques ou habituelles de consommation énergétique. 

• Orange (175 à ~225) : Cette plage se situe dans la partie droite du centre de 

la distribution. Bien qu’elle soit moins dense que le cœur (bleu et vert), elle reste 

significative et reflète des niveaux de consommation modérément élevés. 

• Violet (225 à ~250) : Cette plage correspond aux valeurs les plus élevées, qui 

diminuent progressivement en fréquence vers la queue droite de la distribution. Cela 
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indique que ces pics de consommation énergétique sont moins fréquents, mais non 

négligeables. 

Les données ont également été segmentées selon les saisons. Deux clusters ont été 

identifiés, conformément à la figure 4.15.  

 

Figure 4.15 : Tendance de consommation par cluster de saison créé 

Sur la figure 4.12, on distingue une phase de : 

• Janvier à août, associée à une consommation généralement stable et élevée, 

caractérisée par le groupe (cluster) 0, 

• Septembre à décembre, représentée par le cluster 1 et caractérisée par une 

consommation plus variable. 

Cette alternance régulière traduit une saisonnalité marquée dans les comportements 

énergétiques et justifie l’intérêt de cette approche. 

4.5.  RESULTATS DES MODELES MIS EN ŒUVRE  

Cette section se concentre sur l'application de diverses techniques de modélisation 

pour prédire la consommation énergétique à partir d'une série temporelle complexe. 

L'objectif a été de mettre en œuvre une gamme étendue de modèles, allant des approches 

traditionnelles bien établies aux méthodes plus sophistiquées reposant sur l'apprentissage 

profond. Chaque méthode a été rigoureusement construite, tenant compte des spécificités de 

la série analysée, et adaptée pour capturer les différents types de relations temporelles, 

qu'elles soient linéaires ou non linéaires.  

4.5.1.  Comparaison des performances obtenues avec les données de 20% de test 

Cette section vise à comparer les performances obtenues des onze modèles 

implémentés (ARIMA, GAM, Lissage exponentiel, Facebook Prophet, GARCH, LSTM, 
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CNN, GRU, ARIMA-LSTM, CNN-LSTM et CNN-GRU) en deux étapes. La première étape 

consiste à choisir les meilleurs modèles sur les données de test. Quant à la deuxième étape, 

elle permet de sélectionner le meilleur modèle sur la base des prévisions réalisées sur trois 

horizons (24 heures, 48 heures et 72 heures) considérés avec les données du 1er janvier au 31 

mars 2024 fournies également par la SBEE.  

4.5.2.  Modèle ARIMA 

Les mesures de l’erreur du modèle ARIMA évalué sur les 20% de test a révélé les 

performances résumées dans le tableau 4.1.  

Tableau 4.1 : Comparaison des mesures de performance pour le modèle ARIMA implémenté 

Modèle MAE RMSE MAPE (%) R² 

ARIMA 22,8054 27,6569 11,52 -0,00120 

Ces mesures MAE, RMSE et MAPE sont largement éloignées des indicateurs de 

performance jugés satisfaisants dans le tableau 3.2. La MAPE de 11,52% dépasse 3% 

démontrant le non performant du modèle ARIMA avec les MAE et RMSE très grandes. Le 

coefficient de détermination R² légèrement négative (-0,00120), indiquant que le modèle 

n’explique pas la variance de la série mieux qu’une prédiction basée sur la moyenne. La 

figure 4.16 illustre la modélisation de la demande électrique entre la période d’entraînement 

et la période de test. 

Figure 4.16 : Modélisation de la demande en énergie électrique avec le modèle ARIMA implémenté 

La visualisation des résultats met en évidence que le modèle présente des limites dans 

sa capacité à représenter les variations. Ces écarts peuvent être attribués à des non-linéarités 

ou à des relations temporelles que l’approche ARIMA n’est pas conçue pour traiter, ce qui 

avait été soupçonnée dès les premières visualisations. 
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4.5.3.  Modèle Additif Généralisé (GAM) 

Les performances obtenues lors de la période de test sur 20% de données figurent dans 

le tableau 4.2.  

Tableau 4.2 : Comparaison des mesures de performance pour le modèle GAM implémenté 

Modèle MAE RMSE MAPE (%) R² 

GAM 46,9471 55,4612 25 -3,0260 

Les résultats obtenus montrent des performances médiocres d’un MAE de 46,95 et un 

RMSE de 55,46 traduisent des écarts importants entre les prévisions et les valeurs réelles. 

De plus, un MAPE de 25%, largement supérieur à 3% indique que le modèle est moins 

performant. Le R² négatif (-3,03) révèle que le modèle ne parvient pas à expliquer la variance 

de la série. 

Ces résultats indiquent une inadéquation du GAM dans ce cas précis, probablement en 

raison d’une grande difficulté à intégrer les fluctuations rapides ou des dépendances non 

prises en compte par une seule variable temporelle. La figure 4.17 indique l’écart d’erreur 

entre la prévision de la consommation d’énergie sur le test et des vraies valeurs. 

 

Figure 4.17 : Modélisation de la demande en énergie électrique avec le modèle GAM 

L’analyse graphique met également en évidence des écarts notables entre les prévisions 

et les valeurs observées, en particulier dans les variations. 

4.5.4.  Modèle GARCH 

Le tableau 4.3 présente les valeurs de performance de test du modèle GARCH. 

Tableau 4.3 : Comparaison des mesures de performance pour le modèle GARCH implémenté 
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Modèle MAE RMSE MAPE (%) R² 

GARCH 41,76 48,73 19,81 -1,20 

Les résultats obtenus suscitent des interrogations. Avec un MAE de 41,76 et un RMSE 

de 48,73, les prévisions du modèle restent éloignées des valeurs réelles, indiquant des erreurs 

non négligeables. Le MAPE, à 19,81 %, met en évidence une erreur relative importante, 

tandis qu’un R² négatif de -1,20 révèle que le modèle ne parvient pas à expliquer la variance 

mieux qu’une prédiction basée sur une moyenne constante. Ces métriques traduisent un écart 

significatif entre la conception théorique du modèle et sa performance pratique dans ce cas 

précis. La figure 4.18 étale les résultats du modèle. 

 

Figure 4.18 : Résultats du modèle GARCH 

L’analyse des coefficients renforce cette observation. Bien que le terme alpha[1] 

(0,7685) illustre une contribution notable des chocs récents à la volatilité, la faiblesse des 

coefficients beta met en lumière une incapacité du modèle à intégrer une persistance 

significative dans les variations conditionnelles. En d'autres termes, la volatilité semble 

réactive à court terme mais manque de structure sur le long terme. La figure 4.19 atteste 

l’incapacité du modèle à intégrer une persistance significative dans les variations 

conditionnelles.   
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Figure 4.19 : Modélisation de la demande en énergie électrique avec le modèle GARCH 

Le graphique de la figure 4.19 met en lumière la discordance entre les prévisions issues 

du modèle GARCH (en rouge) et les valeurs réelles de consommation énergétique (en vert) 

sur la période de test. Les données observées présentent une variabilité marquée, révélant 

des fluctuations complexes et des dynamiques sous-jacentes non linéaires, tandis que les 

prévisions se manifestent sous la forme d’une ligne constante. Cette absence de réactivité 

aux variations des données reflète une limitation fondamentale du modèle dans sa capacité 

à représenter les comportements réels de la série temporelle. 

Le modèle GARCH, bien qu’efficace pour modéliser la volatilité conditionnelle, 

semble inadapté à capturer les aspects dynamiques et récurrents de la consommation 

énergétique dans cet ensemble de données. Cette rigidité dans les prévisions peut être 

attribuée à la conception intrinsèque du modèle, qui se concentre principalement sur la 

modélisation de la variance et non sur la prédiction des valeurs absolues ou des tendances 

complexes. De plus, les fluctuations observées dans les données réelles, liées à des cycles 

temporels ou des événements spécifiques, échappent manifestement à la portée du modèle. 

4.5.5.  Lissage exponentiel 

Le tableau 4.4 illustre les résultats obtenus pendant le test avec le modèle lissage 

exponentiel. 

Tableau 4.4 : Comparaison des mesures de performance pour le modèle lissage exponentiel implémenté 

Modèle MAE RMSE MAPE (%) R² 

Lissage Exponentiel 21,5831 27,0786 10,40 0,0403 

Les performances obtenues, bien qu'encourageantes, soulignent des forces et des 

limites. Avec un MAE de 21,5831 et un RMSE de 27,0786, les prévisions se rapprochent 
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étroitement des valeurs réelles. Un MAPE de 10,40 % supérieur à 3% atteste que le modèle 

est moins performant et un R² de 0,0403 montre que le modèle parvient à expliquer une 

partie de la variance, bien que très faible. Cependant, ces résultats témoignent également 

d’une marge d’amélioration pour des fluctuations plus fines. La figure 4.20 met en lumière 

la moins performance du modèle. 

 

Figure 4.20 : Modélisation de la demande en énergie électrique avec le modèle du lissage exponentiel 

L’analyse visuelle renforce cette observation : le modèle suit avec fluidité la tendance 

et la saisonnalité globales, mais montre des écarts dans certaines transitions rapides ou 

anomalies locales. Cela pourrait être dû à la rigidité relative à des termes saisonniers et de 

tendance fixée par le lissage exponentiel. 

4.5.6.  Modèle Prophet 

Les performances du modèle ont été évaluées à l’aide des métriques présentées dans 

le tableau 4.5. 

Tableau 4.5 : Comparaison des mesures de performance pour le modèle Prophet implémenté 

Modèle MAE RMSE MAPE (%) R² 

Prophet 12,2406 15,9123 7,52 0,7424 

Un MAE de 12,2406, un RMSE de 15,9123 et un MAPE (%) de 7,52, supérieur à 3% 

montre que la performance du modèle n’est pas idéale. Mais ces résultats témoignent d’une 

bonne capacité du modèle à représenter la tendance globale et les variations saisonnières, 

bien que certaines fluctuations n’aient pas été entièrement capturées, comme le montre la 

figure 4.21. 
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Figure 4.21 : Modélisation de la demande en énergie électrique avec le modèle prophet 

4.5.7.  Modèle LSTM 

Les performances du modèle LSTM sont listées dans le tableau 4.6. 

Tableau 4.6 : Comparaison des mesures de performance pour le modèle LSTM implémenté 

Modèle MAE RMSE MAPE (%) R² 

LSTM 5,4588 9,1822 2,89 0,9216 

Les résultats obtenus montrent des performances remarquables. Un MAE de 5,4588 

indique des écarts très faibles entre les valeurs prédites et les observations réelles. Un MAPE 

de 2,89%, inférieur à 3% atteste de la précision relative à des prévisions et un R² de 0,9219 

reflète une capacité exceptionnelle du modèle à expliquer la variance de la série. Ces 

performances surpassent nettement celles des approches précédentes, démontrant l’efficacité 

du LSTM dans ce contexte. La figure 4.22 atteste la meilleure performance du modèle à 

travers la courbe de prévision sur les 20% des données de test et la courbe des vraies valeurs. 

 

             Figure 4.22 : Modélisation de la demande en énergie électrique avec le modèle LSTM 
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La visualisation des résultats confirme cette analyse. Les prédictions suivent 

fidèlement la tendance et les fluctuations des données réelles. Cela illustre la capacité des 

LSTM à capturer non seulement les motifs temporels globaux mais aussi les détails plus 

subtils présents dans les séries chronologiques. 

4.5.8.  Modèle CNN 

Les performances du modèle CNN sont présentées dans le tableau 4. 

 Tableau 4.7 : Comparaison des mesures de performance pour le modèle CNN implémenté 

Modèle MAE RMSE MAPE (%) R² 

CNN 6,5563 10,0489 3,34 0,9064 

Les résultats obtenus révèlent une précision notable, avec un MAE de 6,5563, un 

RMSE de 10,0489, un MAPE de 3,34 % et un R² de 0,9064. Ces métriques démontrent la 

capacité du modèle à prédire la consommation énergétique avec une grande fiabilité, 

expliquant environ 90,64 % de la variance des données observées. Les prédictions montrent 

une forte proximité avec les valeurs réelles, témoignant de l’efficacité du modèle à capturer 

les dépendances locales. La figure 4.23 illustre la performance du modèle sur la prévision 

avec les données de test. 

 

 

Figure 4.23 : Modélisation de la demande en énergie électrique avec le modèle CNN 

 Malgré ces résultats encourageants, certaines limitations subsistent. Bien que le 

modèle soit performant pour détecter des motifs locaux, il pourrait être enrichi. Des 

extensions potentielles incluent l’ajout de mécanismes d’attention ou la combinaison avec 

d’autres architectures, comme les LSTM, pour exploiter les dépendances globales. 

4.5.9. Modèle GRU 

Le tableau 4.8 comporte le bilan des mesures de performance du modèle GRU. 
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Tableau 4.8 : Comparaison des mesures de performance pour le modèle GRU implémenté 

Modèle MAE RMSE MAPE (%) R² 

GRU 6,1519 9,8432 3,23 0,9099 

 

Un MAE de 6,1519 est relativement faible avec un MAPE de 3,23%, proche de 3% 

démontrent que le modèle fait partir des modèles performants. La visualisation des valeurs 

réelles et des prédictions faites par le modèle illustre sa capacité à expliquer les dépendances 

globales dans les séries chronologiques. La figure 4.24 donne l’allure des vraies valeurs et 

des prévisions. 

 

 

 

 

 

 

 

 

 

 

Figure 4.24 : Modélisation de la demande en énergie électrique avec le modèle GRU 

4.5.10.  Modèle ARIMA-LSTM 

Les résultats du modèle lors de l’implémentation du modèle sont consignés dans le 

tableau 4.9. 

Tableau 4.9 : Comparaison des mesures de performance pour le modèle ARIMA-LSTM implémenté 

Modèle MAE RMSE MAPE (%) R² 

ARIMA-LSTM 22,0999 29,2664 11,62 -0,1293 

Les écarts d’erreur du modèle hybride tels que MAE = 22,0999 et RMSE = 29,2664 

très grands prouvent l’incapacité de l’association du modèle LSTM avec le modèle ARIMA. 

Le MAPE de 11,62%, supérieur à 3% démontre que le modèle est moins performant. La 

figure 4.25 issue de la visualisation des prévisions réalisées avec les consommations réelles 

confirme que le modèle n’est pas idéal dans ce contexte. 
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Figure 4.25 : Modélisation de la demande en énergie électrique avec le modèle ARIMA-LSTM 

4.5.11.  Modèle CNN-LSTM 

Le tableau 4.10 récapitule les indicateurs de performance du modèle CNN-LSTM lors 

du test. 

Tableau 4.10 : Comparaison des mesures de performance pour le modèle CNN-LSTM implémenté 

Modèle MAE RMSE MAPE (%) R² 

CNN-LSTM 6,1786 9,7154 3,17 0,9125 

Après 50 époques d'entraînement, les performances sur l'ensemble de test sont 

intéressantes. Les métriques affichent un MAE de 6,1786, faible devant un RMSE de 9,7154, 

un MAPE de 3,17 % proche de 3%, et un R² de 0,9125, indiquant une forte précision et une 

excellente capacité explicative. Ces résultats suggèrent que le modèle est non seulement 

précis, mais qu'il capte efficacement la dynamique de la série, comme l’indique la figure 

4.26. 

 

 

Figure 4.26 : Modélisation de la demande en énergie électrique avec le modèle CNN-LSTM 
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4.5.12. Modèle CNN-GRU 

Les indicateurs de performance du modèle CNN-GRU sont présentés dans le tableau 

4.11 illustrant sa bonne performance sur les données de test. 

Tableau 4.11 : Comparaison des mesures de performance pour le modèle CNN-GRU implémenté 

Modèle MAE RMSE MAPE (%) R² 

CNN-GRU 6,3449 9,8073 3,28 0,9108 

Disposant un MAE de 6,3449 relativement faible et un MAPE de 3,28% proche de 

3%, le modèle démontre sa capacité à capturer les dépendances de la série temporelle. La 

figure 4.27 indique aussi que le modèle arrive à suivre la même trajectoire que la tendance 

de la série. 

 

Figure 4.27 : Modélisation de la demande en énergie électrique avec le modèle CNN-GRU 

4.5.13.  Synthèse des modèles performants sur les données de test 

Le tableau 4.12 fait le résumé des modèles implémentés jugés performants sur les 

données de test. 

Tableau 4.12 : Résumé des modèles jugés performants 

N° Modèle MAE RMSE MAPE (%) R² 

01 LSTM 5,4588 9,1822 2,89 0,9219 

02 CNN-LSTM 6,1786 9,7154 3,17 0,9125 

03 GRU 6,1519 9,8432 3,23 0,9099 

04 CNN-GRU 6,3449 9,8073 3,28 0,9108 

05 CNN 6,5563 10,0489 3,34 0,9064 
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4.5.14.  Comparaison des modèles performants choisis 

Dans cette section, il s’agit principalement de sélectionner un meilleur modèle parmi 

les cinq premiers modèles (LSTM, CNN-LSTM, GRU, CNN-GRU et CNN) validés sur les 

données de test. Cette sélection se base sur des trois horizons différents (24 heures, 48 heures 

et 72 heures) de prévisions avec les données du 1er janvier au 31 mars. 

4.5.15.  Analyse de l’horizon de temps idéal pour les prédictions 

Dans le cadre de cette recherche, les performances des cinq modèles mentionnés dans 

le tableau 4.12 ont été examinés pour des horizons de prévisions allant de 24 heures (1 jour) 

à 72 heures (3 jours). L’objectif était d’identifier l’horizon le plus pertinent pour des 

prévisions énergétiques fiables, en se concentrant sur l’Erreur Absolue Moyenne en 

Pourcentage (MAPE) et l’Erreur Absolue Moyenne (MAE). La MAPE constitue la base de 

cette analyse comparative étant la métrique la plus pratique dans la prévision énergétique. 

4.5.15.1. Modèle LSTM 

Les résultats des métriques utilisées pour évaluer le modèle LSTM pour tous les 

différents horizons de temps sont présentés dans cette section. Le tableau 4.13 récapitule des 

métriques de performance de LSTM pour les différents horizons de temps choisis. 

Tableau 4.13 : Récapitulatif des métriques de performance de LSTM pour les différents horizons de temps 

Horizon (heures) MAE RMSE MAPE (%) R² 

24 4,8583 5,8833 2,05 0,9322 

48 4,6765 5,9106 1,91 0,9292 

72 4,1490 5,3930 1,68 0, 9313 

 

Les valeurs des métriques obtenues pour chaque horizon montrent des variations 

significatives, reflétant l’évolution des performances avec l’augmentation de l’horizon 

temporel. 

➢ Horizon 24 heures 

Cet horizon initial affiche un MAE de 4,8583 et un RMSE de 5,8833, soulignant une 

capacité solide à gérer les prévisions à court terme. Avec un MAPE de 2,05%, le modèle 

montre une précision relative très satisfaisante, et un R² de 0,9322 révèle que la majorité de 

la variabilité des données est expliquée. Cela fait de cet horizon un choix fiable pour des 

décisions opérationnelles immédiates, telles que l'optimisation des ressources sur une 

journée. 
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➢ Horizon 48 heures  

À mesure que l’horizon s’étend à 48 heures, les performances du modèle diminuent. 

Le MAE à 4,6765 et le MAPE à 1,91 traduisant une diminution globale des erreurs, confirme 

une précision accrue, avec le R² de 0,9292 souligne une continuité dans la capacité 

explicative du modèle. Ces résultats placent cet horizon comme une solution adaptée pour 

des prévisions nécessitant une anticipation modérée dans la prévision à court terme. 

➢ Horizon 72 heures 

Pour cet horizon, le MAE et le MAPE sont améliorés davantage avec de valeurs 

respectivement de 4,1490 et de 1,68, traduisant un gain de précision. Cet horizon conserve 

un sens d’amélioration considérable.  La figure 4.28 montre l’évolution des métriques de 

performant du modèle LSTM. 

 

Figure 4.28 : Evolution des métriques de performance avec LSTM 

L’analyse de la figure 4.28 montre que la précision des prévisions reste dans le sens 

s’améliore au fur et à mesure que l’horizon s’élargit. Les trois horizons 24 heures, 48 heures 

et 72 heures se distinguent comme les plus performants en termes de MAE et de MAPE. Les 

figures 4.29, 4.30 et 4.31 aussi attestent la précision du modèle LSTM avec ces données 

utilisées. 
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Figure 4.29 : Evolution de prévisions de la consommation d'électricité avec le modèle LSTM sur l'horizon 24 

heures 

Figure 4.30 : Evolution de prévisions de la consommation d'électricité avec le modèle LSTM sur l'horizon 

48 heures 

 

Figure 4.31 : Evolution de prévisions de la consommation d'électricité avec le modèle LSTM sur 

l'horizon 72 heures 

4.5.15.2. Modèle CNN-LSTM 

Ici est présentée l’analyse comparative des performances du modèle CNN-LSTM sur 

les horizons de temps 24 heures, 48 heures et 72 heures. Le tableau 4.14 met en lumière les 

métriques du CNN-LSTM. 
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Tableau 4.14 : Récapitulation des métriques de performance de CNN-LSTM pour différents horizons de temps 

Horizon (heures) MAE RMSE MAPE R² 

24 6,0622 7,9730 2,53 0,8754 

48 5,5830 7,5231 2,28 0,8854 

72 4,7463 6,6724 1,92 0,8948 

 

A première vue, les métriques dans le tableau sont intéressantes. Pour obtenir une 

analyse approfondie, ce travail s’est attelé à analyser la performance pour chaque horizon.  

➢ Horizon 24 heures 

Cet horizon initial affiche une MAE de 6,0622 et un RMSE de 7,9730, soulignant une 

capacité solide à gérer les prévisions à court terme. Avec un MAPE de 2,53%, le modèle 

montre une précision relative très satisfaisante, et un R² de 0,8754 révèle que la majorité de 

la variabilité des données est expliquée. Cela fait de cet horizon un choix fiable pour des 

décisions opérationnelles immédiates, telles que l'optimisation des ressources sur une 

journée. 

➢ Horizon 48 heures 

À mesure que l’horizon s’étend à 48 heures, le modèle améliore ses performances. La 

MAE descend à 5,5830, et le RMSE à 7,5231, traduisant une réduction globale des erreurs. 

Le MAPE, abaissé à 2,28%, confirme une précision accrue, tandis que le R² maintenu à 

0,8854 souligne une continuité dans la capacité explicative du modèle. Ces résultats placent 

cet horizon comme une solution adaptée pour des prévisions nécessitant une anticipation 

modérée, par exemple, dans la planification de la chaîne logistique. 

➢ Horizon 72 heures 

Sur trois jours, le modèle atteint son pic de performance. Le MAE chute à 4,7463, le 

RMSE descend à 6,6724, et le MAPE est réduit à 1,92%, démontrant une précision 

remarquable pour un horizon étendu. La figure 4.32 confirme l’évolution des métriques 

d’évaluation du modèle CNN-LSTM. 
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Figure 4.32 : Evolution des métriques de performance de CNN-LSTM pour différents horizons de temps 

La stabilité des performances et l’amélioration progressive des métriques (MAE, 

RMSE, MAPE) à mesure que l’horizon s’allonge, montrent une maturité technique qui 

inspire confiance pour une utilisation. Les figures 4.33, 4.44 et 4.35 confirment le degré de 

précision du modèle. 

Figure 4.33 : Evolution de prévisions de la consommation d'électricité avec le modèle CNN-LSTM 

sur l'horizon 24 heures 

Figure 4.34 : Evolution de prévisions de la consommation d'électricité avec le modèle CNN-LSTM sur 

l'horizon 48 heures 



 

 

MEMOIRE POUR L’OBTENTION DU DIPLOME D’INGENIEUR CAP/EPAC – REDIGE PAR JEROME SESSOU 
77 

Figure 4.35 : Evolution de prévisions de la consommation d'électricité avec le modèle CNN-LSTM sur 

l'horizon 72 heures 

 

4.5.15.3. Modèle CNN 

Cette section présente l’analyse comparative des différents horizons de temps avec le 

modèle CNN. Le tableau 4.15 récapitule des métriques de performance du modèle CNN 

pour les différents horizons de temps. 

Tableau 4.15 : Récapitulation des métriques de performance de CNN pour les différents horizons de temps 

Horizon (heures) MAE RMSE MAPE (%) R² 

24 5,1781 6,2640 2,16 0,9231 

48 5,4333 6,9654 2,20 0,9017 

72 4,9923 6,3578 2,00 0,9045 

 

Les résultats ont fait l’objet d’une analyse comparative selon qu’il s’agit de l’horizon 

24, 48 ou 72 heures. 

➢ Horizon 24 heures 

Avec un MAE de 5,1781, cet horizon présente une erreur moyenne satisfaisante, 

traduisant sa capacité à gérer une prévision à court terme. Le MAPE de 2,16% confirme la 

meilleure précision du modèle CNN. Pour un R² de 9231%, l’horizon indique que le modèle 

explique très bien de la variance observée dans les données. 

➢ Horizon 48 heures 

Pour cet horizon, le MAE de 5,4333 et le MAPE de 2,20% montrent une légère 

augmentation par rapport à la MAE de 24 heures, mais reste dans un écart satisfaisant pour 

les prévisions à court terme. 

➢ Horizon 72 heures 

Sur ces trois jours, le modèle atteint sa limite de performance avec la MAE 4,9923 et 

le MAPE 2,00. Cet horizon peut être envisagé pour combiner précision et stratégie. En effet, 
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si des commandes sur 72 heures présentent des avantages financiers pour la SBEE, cet 

horizon se comme une option pertinente. La figure 4.36 présente l’évolution des métriques 

de performance du modèle CNN pour différents horizons de temps. 

 

Figure 4.36 : Evolution des métriques de performance de CNN pour différents horizons de temps 

L’analyse de la figure 4.30 montre que, après les 24 heures et 48 heures, la précision 

des prévisions augmente à mesure que l’horizon s’élargit. L’horizon de 72 heures se 

distingue comme le plus performant en termes de MAE = 4,9923 et de MAPE = 2,00%. Les 

figures 4.37, 4.38 et 4.39 indiquent la moins sympathie de l’évolution de prévisions de 

consommation par rapport à la réalité sur les trois horizons de temps. 

Figure 4.37 : Evolution de prévisions de la consommation d'électricité avec le modèle CNN sur l'horizon 24 

heures 

 

Figure 4.38 : Evolution de prévisions de la consommation d'électricité avec le modèle CNN sur l'horizon 48 

heures 
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Figure 4.39 : Evolution de prévisions de la consommation d'électricité avec le modèle CNN sur l'horizon 72 

heures 

4.5.15.4. Modèle GRU 

Dans cette section, le tableau 4.16 présente l’analyse comparative des performances 

du modèle GRU sur les horizons de temps 24 heures, 48 heures et 72 heures. 

Tableau 4.16 : Récapitulatif des métriques de performance de GRU pour différents horizons de temps 

Horizon (heures) MAE RMSE MAPE (%) R² 

24 6,3963 7,3612 2,69 0,8938 

48 5,7480 6,8657 2,35 0,9045 

72 4,9838 6,2474 2,02 0,9078 

Les résultats se trouvant dans le tableau ont nécessité une analyse comparative suivant 

les horizons 24 heures, 48 heures ou 72 heures utilisés. 

➢ Horizon 24 heures 

Le MAE de valeur 6,3963 pour cet horizon présente une erreur notable, traduisant une 

précision modérée à courte échéance. Le RMSE de 7,3612 confirme une importance de 

précision et un R² de 89% indique que le modèle explique bien de la variance observée dans 

les données. Il faire partir des modèles de précision avec la MAPE de 2,69. 

➢ Horizon 48 heures 

Le MAE diminue à 5,7480 et le RMSE de valeur 6,8657, indiquant une augmentation 

de performances par rapport à l’horizon précédent. Ce résultat est sanctionné par une MAPE 

de 2,35% que l’erreur relative est toujours dans la marge de meilleure précision. De plus, la 

valeur du R² de 90% démontre que le modèle fait meilleur pour une moyenne constante. Ces 

résultats indiquent que cet horizon est fiable pour des décisions opérationnelles précises. 

➢ Horizon 72 heures 

Pour cet horizon, le modèle atteint son pic de performances. Le MAE chute à 4,9838, 

le RMSE descend à 6,2474 et le MAPE est réduit à 2,02%, démontrant une précision 

remarquable pour un horizon étendu. Le R² de 90% reste largement acceptable. 
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La figure 4.34 indique l’évolution des métriques de performance de GRU pour 

différents horizons de temps. 

 

Figure 4.40 : Evolution des métriques de performance de GRU pour différents horizons de temps 

L’analyse de la figure 4.40 montre que la précision des prévisions augmente après 24 

heure et les horizons de 48 heures et de 72 heures se distinguent comme le plus performant 

en termes de MAE, avec des erreurs de 5,7480, de 4,9838 et de MAPE de 2,35% et de 2,02%. 

Les figures 4.41, 4.42 et 4.43 mettent en lumière le degré de qualité de GRU. 

Figure 4.41 : Evolution de prévisions de la consommation d'électricité avec le modèle GRU sur l'horizon 24 

heures 

Figure 4.42 : Evolution de prévisions de la consommation d'électricité avec le modèle GRU sur l'horizon 48 

heures 
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Figure 4.43 : Evolution de prévisions de la consommation d'électricité avec le modèle GRU sur l'horizon 72 

heures 

4.5.15.5. Modèle CNN-GRU 

Ici, il s’agit de l’analyse comparative des différents horizons de temps avec le modèle 

CNN-GRU. Le tableau 4.17 contient les résultats de la validation de CNN-GRU. 

Tableau 4.17 : Récapitulation des métriques de performance du modèle avancé CNN-GRU pour les différents 

horizons de temps de prévisions 

Horizon (heures) MAE RMSE MAPE (%) R² 

24 6,1835 7,4426 2,58 0,8915 

48 5,8026 7,0917 2,36 0,8981 

72 5,0598 6,4910 2,05 0,9004 

 

Les résultats mentionnés dans le tableau 4.7 sont intéressants. Pour obtenir une analyse 

approfondie, ce travail s’est attelé à analyser la performance pour chaque horizon. 

➢ Horizon 24 heures 

Le MAE, le MAPE enregistrée sont respectivement de 6,1835 et de 2,58%. Cela 

indique des erreurs modérées pour les prévisions journalières. Cet horizon est 

particulièrement efficace pour des besoins opérationnels immédiats, comme la gestion 

quotidienne de la demande. Les autres métriques, telles qu’un RMSE de 7,4426 et un R² de 

0,8915 confirment la robustesse du modèle sur ce court intervalle. 

➢ Horizon 48 heures 

Avec un MAE de 5,8026, et un MAPE de 2,36%, cet horizon présente le plus faible 

erreur moyenne, suggérant qu’il s’agit du point optimal pour les prévisions à court terme. Il 

montre une amélioration marginale de la précision par rapport à l’horizon de 24 heures. Les 

performances de cet horizon ont augmenté, avec un RMSE réduit de 7,0917 et un R² évolué 

de 0,8981 qui explique de la variance dans les données. 
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➢ Horizon 72 heures 

Pour cet horizon, le MAE est amélioré de 5,0598, traduisant un gain de précision. Cet 

horizon conserve un sens d’amélioration avec un RMSE de 6,4910, un MAPE de 2,05% et 

un R² de 0,9004. La figure 4.35 illustre l’évolution des métriques de performance de CNN-

GRU pour les différents horizons de temps. 

 

Figure 4.44 : Evolution des métriques de performance de CNN-GRU pour différents horizons de temps 

Les performances s’améliorent progressive avec des métriques (MAE, RMSE, MAPE) 

à mesure que l’horizon s’allonge et montrent la capacité du modèle pour des horizons élargi. 

Les figures 4.45, 4.46 et 4.47 présentent l’évolution de prévisions de la consommation avec 

le modèle sur les horizons de temps ciblés.  

Figure 4.45 : Evolution de prévisions de la consommation d'électricité avec le modèle CNN-GRU sur l'horizon 

24 heures 
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Figure 4.46 : Evolution de prévisions de la consommation d'électricité avec le modèle CNN-GRU sur l'horizon 

48 heures 

Figure 4.47 : Evolution de prévisions de la consommation d'électricité avec le modèle CNN-GRU sur l'horizon 

72 heures 

4.5.16.  Sélection finale 

L’analyse comparative des performances des modèles (LSTM, CNN, GRU, CNN-

LSTM et CNN-GRU) révèle des différences notables selon les horizons temporels. Les 

figures 4. 48 et 4.49 présentent le graphique des MAPE et MAE pour ces modèles validés 

par horizon de temps. 

 

Figure 4.48 : Comparaison des MAPE pour différents modèles validés avec de nouvelles données 
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Les MAPE des modèles sélectionnés pour des prévisions sur des horizons temporels 

(24 heures, 48 heures et 72 heures) sont tous inférieurs à 3% et montrent que ces modèles 

sont performants. Toutefois, les MAPE du modèle LSTM sur les trois horizons de temps 

restent inférieurs aux MAPE des autres modèles. 

 

Figure 4.49 : Comparaison des MAE pour différents modèles validés avec de nouvelles données 

Le graphique de la figure 4.49 atteste également que les MAE du modèle LSTM sont 

inférieurs aux MAE des autres modèles utilisés sur ces horizons de temps. Enfin, sur les 

horizons de 24 heures, 48 heures et 72 heures (3 jours), le modèle LSTM demeure le modèle 

le plus performant parmi les modèles sélectionnés démontrant ainsi sa capacité à offrir des 

prévisions précises. 

4.6. DEPLOIEMENT DU MODELE RETENU AU TRAVERS D’UNE 

APPLICATION 

L'application développée, utilisant le framework Streamlit, a pour objectif d'offrir une 

interface intuitive et efficace pour l’exploitation du modèle de prévision énergétique. Cette 

interface est conçue pour permettre à l'utilisateur de charger des données, d'explorer les 

résultats, de générer des prédictions et de visualiser les résultats obtenus. L'architecture de 

l'interface repose sur plusieurs éléments fonctionnels, organisés de manière logique pour 

guider l'utilisateur tout au long du processus. 

4.6.1. En-tête de l'interface 

La figure 4.50 est l’interface de l’application de déploiement du modèle. 
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Figure 4.50 : Interface de l’application de déploiement du modèle 

L'en-tête de l'application contient le bouton "Déployer". Ce bouton centralise l'action 

de déploiement des résultats des prévisions. Une fois les données traitées et les prédictions 

effectuées, l'utilisateur peut cliquer sur ce bouton pour générer des rapports détaillés, 

exporter des visualisations interactives ou encore intégrer les résultats dans un système tiers. 

Cette fonctionnalité est cruciale pour les utilisateurs cherchant à mettre en œuvre les 

prévisions dans un contexte opérationnel.  

4.6.2. Menu latéral gauche 

Le menu latéral constitue l’élément principal de la navigation dans l’application. 

• Chargement des données : Cette section permet à l'utilisateur de charger les données 

à utiliser. En cliquant sur cette option, l'utilisateur peut importer un fichier CSV contenant 

les données historiques sur lesquelles le modèle sera appliqué. Des options telles que le 

glisser-déposer et la fonction parcourir les fichiers sont disponibles pour simplifier le 

processus de chargement. La figure 4.51, la figure 4.52 et la figure 4.38 montrent la 

fonctionnalité de l’application. 

 

 

Figure 4.51 : Fonctionnalité chargement des fichiers application de déploiement 
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• Exploration et Analyse : Une fois les données chargées, cette section permet à 

l'utilisateur d’explorer les données. Des statistiques descriptives et des graphiques 

permettant d’observer la série temporelle originale, la tendance, la saisonnalité, les résidus 

les et anomalies des séries temporelles sont générés automatiquement. 

 

 

 

 

 

 

 

Figure 4.52 : Fonctionnalité de prévisualisation et analyse de données de l’application 

• Prédictions : Cette option active les outils de prévision, permettant à l’utilisateur de 

lancer le modèle de prédiction et d’obtenir les résultats pour des horizons temporels donnés. 

Les prédictions peuvent être visualisées sous forme de courbes ou de tableaux. 

   Figure 4.53 : Fonctionnalité prédiction de l’application 

• Documentation : Cette section est dédiée à fournir des informations détaillées 

concernant l’utilisation de l’application, ainsi que des explications sur les formats de 

fichiers acceptés, les types de modèles disponibles et des exemples pratiques d’application. 

4.6.3. Zone centrale et interactivité 

La zone centrale de l'application est dynamique et change selon l'option choisie dans 

le menu latéral. Lors de l'importation des données, elle se divise en plusieurs sous-sections 

interactives : 

• Importer un fichier CSV : L'utilisateur peut télécharger ses données en sélectionnant 

un fichier CSV directement depuis son appareil. La limite de taille des fichiers est de 200 

Mo, garantissant la prise en charge des fichiers de taille raisonnable. 
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• Faire glisser et déposez le fichier ici : Cette fonctionnalité permet un chargement 

rapide et intuitif des fichiers par simple glisser-déposer, ce qui rend l'interface plus 

accessible, notamment pour des utilisateurs moins expérimentés. 

• Parcourir les fichiers : Une méthode traditionnelle permettant à l’utilisateur de 

sélectionner un fichier à l’aide de l’explorateur de fichiers standard, ce qui garantit une 

compatibilité maximale avec tous les systèmes d’exploitation. 

4.7.  CONCLUSION PARTIELLE 

Ce chapitre a permis, à l’issue de l’analyse des résultats d’identifier que le modèle 

LSTM est l’idéal pour la prévision des données futures en énergie, au regard de la 

configuration des données obtenues auprès de la SBEE. Les résultats ont également révélé 

que ce modèle est performant pour prédire les futures valeurs sur plusieurs horizons de 

temps, notamment 24h, 48h et 72h. L’équipe en charge de la prévision pourra donc obtenir 

des valeurs fiables pour prévoir la demande en énergie électrique, aussi bien pour une gestion 

journalière que pour une gestion sur 3 jours.  
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CONCLUSION GENERALE ET PERSPECTIVES 

Ce mémoire s’est attaqué à une problématique, d’une importance capitale pour le 

développement énergétique du Bénin, qui est celle de la prévision précise de la demande 

d’achat d’électricité sur le court terme. Le défi principal était de proposer un modèle prédictif 

fiable, capable de répondre aux exigences techniques et opérationnelles de la SBEE sur les 

horizons temporels de 24 heures, 48 heures et 72 heures. Dans un pays où les ressources sont 

limitées et où une mauvaise gestion de la demande peut entraîner des coupures coûteuses et 

des perturbations socio-économiques, disposer d’un modèle performant représente un levier 

stratégique pour le développement. 

Après avoir présenté le secteur de l’électricité au Bénin, ce travail a conduit une revue 

de littérature sur la prévision de la demande d’achat d’électricité. Cette revue a permis 

d’identifier les onze (11) modèles qui sont : ARIMA, LSTM, Facebook Prophet, GAM, 

ARIMA-LSTM, CNN, GARCH, CNN-LSTM, GRU, CNN-GRU et le lissage exponentiel. 

Ces modèles ont été implémentés, sur des données obtenues auprès de la SBEE et couvrant 

la période janvier 2017 à décembre 2023, en utilisant le langage Python. Les performances 

de ces modèles ont été évaluées en utilisant comme métriques de performances la MAE et 

le MAPE.  

Enfin, ce mémoire illustre le rôle central des modèles prédictifs modernes dans la 

gestion énergétique, non seulement comme outils d’optimisation, mais aussi comme moteurs 

de transformation pour répondre aux défis actuels et futurs. Ce travail, en combinant rigueur 

scientifique et pragmatisme opérationnel, constitue une base solide pour des initiatives 

futures visant à renforcer la résilience et la durabilité des systèmes énergétiques. Par 

exemple, une étude additionnelle pourrait essayer de déterminer l’infrastructure cloud qui 

optimiserait la consommation du modèle déployé en puissance de calcul sous contraintes de 

maintenir au moins le niveau de performance actuel. Dans un monde où l’énergie est au cœur 

des enjeux de développement, continuer à perfectionner ces approches représente une voie 

incontournable pour garantir un avenir énergétique équitable et durable. Toutefois, le modèle 

sélectionné n’étant pas à 100% performant il est important d’avoir des centrales en réserve 

froide afin de combler le déficit en cas de besoin.  

Il est aussi souhaitable que les recherches continuent en considérant les deux (02) 

saisons de consommation détectées et des variables exogènes afin d’améliorer davantage les 

indicateurs de performances. 
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Par ailleurs, ce travail ouvre des horizons prometteurs. L’application de ce modèle dans 

d’autres pays de la sous-région pourrait renforcer la pertinence de cette méthodologie. En 

tenant compte des spécificités locales, une adaptation régionale pourrait non seulement 

consolider les réseaux électriques, mais aussi encourager une collaboration plus étroite entre 

les acteurs énergétiques du continent. 
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